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Figure 1: Our novel approach to cross-view action recognition. a) We begin with a large collection of unlabelled mocap data
and synthesize fixed length 2D trajectories using orthographic projections (called υ-trajectories). b) Similarly, we generate
dense trajectories for training videos. c) Then, we match the video trajectories to the υ-trajectory database using Non-linear
Circular Temporary Encoding to achieve alignment in both time and pose. d) An alignment for an example is shown. e) We
use the aligned mocap sequence to synthesize multi-view training data (with different azimuthal φ and polar θ angles) for the
same action class as the original video. This additional data acts as a means to transfer knowledge across views.

Abstract

We describe a new approach to transfer knowledge
across views for action recognition by using examples from
a large collection of unlabelled mocap data. We achieve
this by directly matching purely motion based features from
videos to mocap. Our approach recovers 3D pose se-
quences without performing any body part tracking. We use
these matches to generate multiple motion projections and
thus add view invariance to our action recognition model.

We also introduce a closed form solution for approximate
non-linear Circulant Temporal Encoding (nCTE), which al-
lows us to efficiently perform the matches in the frequency
domain. We test our approach on the challenging unsuper-
vised modality of the IXMAS dataset, and use publicly avail-
able motion capture data for matching. Without any addi-
tional annotation effort, we are able to significantly outper-
form the current state of the art.

∗Indicates equal contribution.

1. Introduction
We focus on the problem of action recognition from a

novel viewpoint: given labelled training data from a partic-
ular camera angle (training view), we demonstrate an ap-
proach that recognizes the same action observed from a dif-
ferent camera view (test view) without having access to any
test view data or labels during training time. In our case, this
viewpoint-invariance comes at no additional labelling cost:
a large collection of unlabelled, publicly available mocap
data is used as is.

Human motion, as observed in video sequences, is a 2D
projection of a highly articulated and agile human body.
The change in the relative position of the subject and
the camera alters these projections considerably. This is
why under mild to extreme camera angle changes the per-
formance of state-of-the-art action recognition techniques
drops considerably, especially when no training examples in
the test views are available (see Figure 2 in [14]). This mo-
tivates the development of techniques that add viewpoint-
invariance to action recognition models, ideally without
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having access to the test data during training time, which
is the hardest but also more realistic scenario.

Approaches to cross-view action recognition range from
geometry-based techniques [16, 18, 20] to purely statisti-
cal approaches [6, 14, 15, 34]. Geometry-based techniques
reason about 2D or 3D body part configurations but often
require robust pose estimation at each frame. Another pos-
sibility is to search for a transformation that aligns the ob-
served video to a large number of view-dependent motion
descriptions, or 3D motion models [3, 30]. However, to
generate these descriptors labelled multi-view video data is
needed in the first place.

On the other hand, more general statistical techniques
can be applied to model the viewpoint changes of local
feature-based representations. The goal is to find a trans-
formation in feature-space that makes different views com-
parable [6, 14, 15, 34]. Unfortunately, these approaches are
either not applicable or perform poorly in the case when no
supervision is available for knowledge transfer [14, 34].

In this work, we address all the limitations mentioned
above. We propose a novel approach that does not re-
quire exact tracking nor detection of body parts, but rather
matches videos with a database of mocap sequence projec-
tions. We use trajectory features, which can be easily gener-
ated from mocap as well as from videos, thus we also avoid
the need for labelled multi-view video data that search-
based approaches require. Later, we use the mocap matches
to add view invariance to our model. Moreover, all these
advantages are obtained at no additional labelling cost.

We present three main contributions. First, we intro-
duce υ-trajectories, a simple, computationally inexpensive
descriptor for mocap data that can be compared directly and
efficiently with dense trajectories obtained from video se-
quences. Second, we derive an approximation to Circulant
Temporal Encoding (CTE) that relaxes its linearity assump-
tion. We use this Non-linear CTE to match human activities
in videos to mocap examples, which allows us to estimate
3D pose from 2D videos directly. Third, we further combine
these two ideas to automatically transfer knowledge across
views in cross-view action recognition.

The rest of this paper is organized as follows: in Sec-
tion 2 we discuss related work, Section 3 contains the de-
tails of the proposed approach, we present our experimental
evaluations on the IXMAS dataset in Section 4, and Sec-
tion 5 gives further discussion and outlines future work.

2. Background and Related Work
This works touches upon a number of different areas in

computer vision. We briefly discuss the ideas most relevant
to our approach.

Pose from Monocular Video. The first part of our work
deals with finding a 3D pose sequence from a monocular

video of a single-actor. Due to the highly unconstrained na-
ture of this problem, approaches in this field have focused
on building statistical priors of motion models [29]. How-
ever, these approaches have the limitation of being action-
specific. Andriluka et al. [2] track body parts exploiting
recent advancements in 2D human pose detection and ap-
ply pose and motion priors to recover 3D pose in realistic
videos. Other methods include using physics-based reason-
ing [4, 26] to resolve ambiguities and increase robustness.

By directly matching motion features in video to 2D pro-
jections of mocap data, we are able to avoid using any ap-
pearance information for body part tracking. Also, our non-
parametric approach does not need to make any assump-
tions about a particular motion model. Moreover, for our
application of cross-view action recognition we do not re-
quire the exact location of body parts to learn the action
model. Rather, we are interested in finding similar actions
in mocap examples.

View invariance for action recognition. Early efforts at
view independence in action recognition were based on ge-
ometric reasoning. Parameswaran and Chellappa [16] pro-
pose Invariance Space Trajectories, a geometrical invariant
that uses 5 points that lie in the same plane. Rao et al. [21]
exploit the fact that discontinuities in motion trajectories
are preserved across views. Both these methods assume
that body joint trajectories are available. Another line of
efforts focuses on engineering features that are inherently
view independent. Junejo et al. [10] utilize self-similarity
in motion that is preserved across views. Li et al. [13]
show that dynamical properties of human motion can be
used to generate a view-invariant representation. However,
view-invariant features may lose discriminative information
needed to distinguish different actions [32].

Lately, approaches based on transfer learning have
gained a lot of attention. Farhadi et al. [6] transfer knowl-
edge across views using random projections which are dis-
criminative in both training and test views. A related
method, the Bag of Bilingual Words (BoBW) [15], gen-
erates different dictionaries for each view and learns the
mapping between words using correspondence labels. In
both these cases, correspondence labels between views are
needed. Li and Zickler [14] and more recently Zhang et
al. [34] address this limitation by learning a virtual path be-
tween training and test view feature spaces in an unsuper-
vised manner. These methods do not need labels in the test
view, but still require access to the test view data at training
time, which may not be available in certain realistic scenar-
ios.

Another line of work that closely relates to our approach
utilizes exemplar 3D poses or multi-view video data to
model actions [3, 30]. Other recent methods include [33],
where viewpoint is treated as a latent variable in a struc-



(a) Mocap sequence (b) Cylinder representation (c) Orthographic
projection

(d) Hidden point removal (e) ν-trajectories

Figure 2: υ-trajectories generation pipeline: (a) mocap data have a sequence of body joint locations over time. (b) We
approximate human body shape on top of the joint locations using tapered cylinders to obtain a “Tin-man” model. (c)
Sampled points on the surface of cylinders are projected under orthography for a fixed number of views and cleaned up using
hidden point removal (d). (e) Connecting these points over a fixed time horizon, gives us the υ-trajectories.

tural SVM action classification framework, and [12], which
builds a view-independent manifold for each action us-
ing non-linear dimensionality reduction. These approaches
rely on the availability of annotated multi-view sequences,
which limits their applicability. We want to relax this re-
quirement by synthesizing the data required for training us-
ing unlabelled mocap examples.

Synthetic Data in Vision. The problem of collecting
large realistic datasets to capture intra-class variations also
occurs in human pose detection. Pishchulin et al. [19] ren-
der 3D human models on natural backgrounds to generate
training data for joint detection and pose estimation using
a small amount of real data. Shotton et al. [23] use syn-
thetic depth images to expand their training set to learn body
part labels from a single depth image. Another related tech-
nique, proposed by Chen and Grauman [5], uses unlabelled
video data to generate examples for actions in still images.

Dense Trajectories. Dense trajectories have proven to be
effective features for action recognition in the wild. First
proposed as an auxiliary to visual descriptors [27], they
were also found to perform well as local descriptors on their
own [8, 27, 28]. In this work we introduce υ-trajectories,
a version of dense trajectories that can be computed di-
rectly from mocap data. Previous approaches that have
used mocap data for pose or action recognition usually re-
quire realistic rendering [19, 24], which attempts to ap-
proximate the visual richness of the real world. However,
photo-realistic rendering is still a hard and computation-

ally expensive problem. We avoid this by using entirely
motion-based features. This has three advantages: first, it
reduces the computational overhead compared to previous
approaches, second, it allows us to compute trajectories at
any arbitrary resolution (see Section 3.1), and third, it min-
imizes assumptions about visual appearance (e.g. clothing,
lighting).

Non-linear Circulant Temporal Encoding. Also related
to our work are large scale retrieval techniques. In this
context, Revaud et al. recently proposed Circulant Tempo-
ral Encoding (CTE) [22], a method for large-scale event
retrieval that incorporates previous findings on large-scale
image search [9]. Furthermore, temporal consistency is en-
forced by interpreting filtered circular convolution as a Reg-
ularized Least Squares problem, and solving it efficiently
in the frequency domain [7]. CTE assumes that individ-
ual frame descriptors can be compared with a linear ker-
nel. While this works well for the VLAD descriptors used
in [22], dense trajectories have been found to perform better
when aggregated using BoW [8]. It is well known that BoW
are better compared using the χ2 distance [25]. Therefore,
in Section 3.3, we derive an approximation to CTE that in-
corporates non-linear distance metrics.

3. Solution Methodology

We define υ-trajectories as an orthographic projection of
curves generated by tracking points on the surface of a 3D
model. In this section we show how to generate υ-trajectory



features using mocap data. We then proceed to describe
Non-linear CTE, which we use to align videos and mo-
cap data. Finally, we also describe our action recognition
pipeline based on data augmentation using the aligned 3D
motion examples.

3.1. Generating υ-trajectories

Mocap sequences provide a series of body joint positions
over time. We approximate body parts by fitting cylinders
with bones (connections between body joints) as axes, and
then putting a dense grid on the surface of each cylinder (see
Figure 2 (b)).

Generating multiple projections. We project this 3D
grid under orthography for a fixed number of view-
points. With orthographic projection, there are only two
parameters to vary: the azimuthal angle φ ∈ Φ =
{0, π/3, 2π/3, pi, 4π/3, 5π/3}, and the polar or zenith an-
gle θ ∈ Θ = {π/6, π/3, π/2}, as we assume that a camera
looking up is unlikely. (see Figure 2 (c)). When computing
trajectories from video sequences, making use of multiple
spatial scales is essential to avoid scale artifacts [27]. How-
ever, since we do not create an image from the 3D model,
we are not limited in spatial resolution.

Hidden point removal. We account for self-occlusions
by removing points that should not be visible from a given
viewpoint. First we perform back-face culling, and on the
remaining points we use a freely available off-the-shelf im-
plementation of the method by Katz et al.1 [11]. This gives
us a set of filtered points corresponding to each projection
(see Figure 2 (d)).

Trajectory generation and postprocessing. We connect
these filtered 2D points in time over a fixed horizon of T
frames to obtain υ-trajectories. To make video and mocap
data comparable, we make sure that the sampled frame rate
for mocap is the same as for the videos used in the experi-
ments, and use the same T when computing trajectories on
videos. We use T = 15, which has been found to work well
in the past [27]. It was also found in [27] that denser trajec-
tories increase the recognition accuracy. While in a video
the trajectory density is inherently limited by the pixel res-
olution, with mocap data we can track points more densely.
To balance the trade-off between accuracy and computa-
tional overhead, we compute 50 trajectories per frame. Fig-
ure 2 provides an overview of the υ-trajectory generation
pipeline. Our code to generate υ-trajectories from mocap
sequences is freely available online.2

1http://www.mathworks.com/matlabcentral/
fileexchange/16581-hidden-point-removal

2https://github.com/jltmtz/
mocap-dense-trajectories

3.2. Describing video inputs with dense trajectories

We describe our input videos with dense trajectories. We
use a dense grid, computing trajectories every other pixel, as
this increases accuracy at no additional memory cost after
BoW aggregation [27]. We used the freely available imple-
mentation of Wang et al.3

3.3. Aligning video and mocap sequences via Non-
linear CTE

The amount of synthesized υ-trajectory data scales lin-
early with the total length of the mocap sequences, as well
as with the number of projections. This can result in a large
database of feature descriptors that must be searched effi-
ciently. For this reason, we extend Circulant Temporal En-
coding [22], earlier applied to large scale video retrieval, to
match video and mocap sequences.

First, we compute the υ-trajectories of each orthographic
projection of a mocap sequence and then obtain n frame de-
scriptors vi ∈ Rd by aggregating the υ-trajectories in stan-
dard bags of features. Later, we concatenate the n frame
descriptors of each sequence to obtain a matrix represen-
tation v = [v>1 , . . . ,v

>
d ]> = [v1, . . . ,vn] ∈ Rd×n. We

construct a database, V , of these descriptors using all the
mocap sequences available in the mocap dataset.

At query time, we obtain dense trajectories for each
video. We similarly obtain per-frame descriptors by ag-
gregating the trajectories into bags of features zi ∈ Rd,
and concatenate the descriptors into a video representation
z = [z>1 , . . . , z

>
d ]> = [z1, . . . , zn] ∈ Rd×n.

Equation 1 of [22] first considers the correlation similar-
ity measure to compare v ∈ V and z:

sδ(z,v) =

∞∑
t=−∞

〈zt,vt−δ〉 . (1)

This assumes that dot product is a good similarity mea-
sure between v and z. However, this is not the case for the
BoW that describe our frames. We therefore define a ker-
nelized similarity

sδ(z,v) =

∞∑
t=−∞

k(zt,vt−δ) (2)

=

∞∑
t=−∞

〈Ψ(zt),Ψ(vt−δ)〉 , (3)

where Ψ(x) : Rd → Rd′ is a transformation that represents
x in the reproducing kernel Hilbert space of k. Using col-
umn notation and the convolution theorem, we can rewrite
(3) as

3http://lear.inrialpes.fr/people/wang/dense_
trajectories

http://www.mathworks.com/matlabcentral/fileexchange/16581-hidden-point-removal
http://www.mathworks.com/matlabcentral/fileexchange/16581-hidden-point-removal
https://github.com/jltmtz/mocap-dense-trajectories
https://github.com/jltmtz/mocap-dense-trajectories
http://lear.inrialpes.fr/people/wang/dense_trajectories
http://lear.inrialpes.fr/people/wang/dense_trajectories


s(z,v) = F−1
(

d∑
i=1

F(Ψ(z i))
∗ �F(Ψ(v i))

)
, (4)

where � denotes element-wise multiplication. Here, we
note that if k is a homogeneous additive kernel, then we
can rewrite Ψ [25] as

Ψ(x) =
[√

x1Lκ, . . . ,
√
xnLκ

]
, (5)

where L is the sampling period, and κ is the sampling spec-
trum given by the inverse Fourier transform of the kernel
signature, K. To obtain an approximation, Ψ̂(x) ≈ Ψ(x),
of the same dimensionality as x, we assume κ ≈ κ̂ = κ(0)
which is a constant [25]. Therefore, due to the linearity of
the Fourier transform, we can rewrite (4) as

s(z,v) ≈
√
Lκ̂F−1

(
d∑
i=1

F(
√

z i)
∗ �F(

√
v i)

)
, (6)

where
√

x denotes the element-wise square root of x. By
adding a filter and a regularization parameter, λ, we achieve
the final expression [7, 22]

sλ
′
(z,v) ≈ 1

d
F−1

(
d∑
i=1

F(
√

z i)
∗ �F(

√
v i)

F(
√

z i)∗ �F(
√

z i) + λ′

)
,

(7)
where λ′ = λ/

√
Lκ̂. This result incorporates the finding

that computing the square root of a BoW leads to better
retrieval performance [17], and offers another perspective
on the signed square root heuristic for BoW [9]. In what
follows, we refer to (7) as Non-linear Circulant Temporal
Encoding (nCTE).

Remark on using different kernels. In (7), setting dif-
ferent values for κ̂ is equivalent to using different kernel
approximations [25]. For example, κ̂ = 1 amounts to us-
ing either Hellinger’s or the χ2 kernel, while κ̂ = 2/π
and κ̂ = 2/ log 4 are equivalent to using the intersection
or the JS kernels respectively. This can be done efficiently
at query time, without the expense of recomputing the en-
tire database. We set κ̂ = 1 so as to use an approximate χ2

kernel, and L = 0.8, as suggested in [25].

nCTE implementation details. In practice, we obtain
bags of words by computing cluster centers exclusively with
video data, using 2,000 words. Later we perform PCA on
each vi and keep the first 200 components. Unlike [22], we
do not perform further high-frequency pruning, as it has the
disadvantage of making alignments inherently ambiguous.

Rather, we compute (7) directly. Since all vi are guaranteed
to be purely real, we can store only half of their Fourier rep-
resentation. For our experiments, we use the CMU mocap
database [1]. After calculating 18 different projections for
each sequence (as indicated in Section 3.1), we can store the
database containing approximately 162 hours of projected
data in 30 GB, and perform the match in around 30 seconds
on a 3.2 GHz machine using a single core.

3.4. Data augmentation and classification

For a video sequence v, we compute (7) directly and ob-
tain similarity scores for each entry in the mocap database.
We simply keep the sequence and the alignment with the
maximum score and define the tuple m = (f, θ, φ, tm),
where f represents the selected mocap sequence, θ and φ
are the azimuthal and polar angles corresponding to the
matched viewpoint, and tm is the index of the temporally
aligned frame in the matched mocap sequence where the
match peak occurs.

Data augmentation. LetM be the set of all the matches
for the videos in the training view. For every match m ∈
M, we pick a subset of frames in the mocap sequence f in
the range [tm − τ, tm + τ ]. Then we collect υ-trajectories
for all 18 viewing angles (3 in Θ, 6 in Φ) and label them
with the same class label as the video being matched. We
later use these multi-view mocap examples to augment our
training data. For an overview of the pipeline, see Figure 1.

4. Experiments

We chose the INRIA IXMAS dataset [31] for our exper-
iments. The dataset has 11 actions such as waving, punch-
ing and kicking, performed three times by 10 subjects. Five
synchronized camera views are available. Researchers have
used this dataset for cross-view action recognition in three
different evaluation modes [34]: a) correspondence mode,
where apart from the annotations for source views, view
correspondence for a subset of the test examples is also
given, b) semi-supervised mode, where some of the exam-
ples in the test view, along with labels, are available at train-
ing time, and c) unsupervised mode, where no labelled ex-
amples in the test view are available. The latter is the most
challenging in terms of classification accuracy reported in
the literature so far, since the test view is completely novel.

In this paper, we present results for the unsupervised
mode because it is the most challenging. This also means
we make fewer assumptions about the available labels. All
our reported results correspond to training and testing on
different views, assuming that no videos, labels or corre-
spondences from the test view are available at training time.
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Figure 3: Typical alignments produced by nCTE. The above four sequences include video and the corresponding υ-
trajectories generated from mocap (in green boxes). a), b) and c) are typical good alignments, where both the action and
the viewpoint are well matched. The fourth sequence is a typical failure case: the movement of the hand of the actress causes
it to align with a sequence of a person standing up.
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Figure 4: We compare the performance of our approach (nCTE + data augmentation) with our baseline and Hankelets (Table
3 in [13]), the current state-of-the-art. Every column corresponds to one train-test view pair. The best result is shown in bold,
and the second best is underlined. Results are averaged over all classes.
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Baseline. We describe each video in our dataset as a BoW
of dense trajectories. We compute dense trajectories sam-
pling every other pixel, and let each trajectory be 15 frames
long as in [27]. We cluster the trajectories from the train-
ing view into 2,000 k-means clusters, and generate a BoW
representation for each video. For classification, we use a
non-linear SVM with a χ2 kernel. We use all the exam-
ples (from a training view) as our training set in a one-vs-all
SVM framework, and all the videos in the test view as our
test set. This simple baseline already outperforms the state
of the art. As reported in Table 1, dense trajectories per-
form significantly better than the overall accuracy results
reported in the literature so far [13].

Recognition with augmented multi-view data. The
pipeline using multi-view data is almost entirely similar to
the one described above. The only difference between the
baseline and our approach is the augmentation step: for ev-
ery video sequence, the 18 projections of the matched mo-
cap sequence are added as positive training examples. We
show some typical good matches and error cases returned

by nCTE in Figure. 3. We chose λ = 0.01 for all our ex-
periments. For BoW aggregation, we use the same cluster
centers as described above.

Combination Accuracy
nCTE based matching + augmentation (ours) 67.4%
Baseline 62.1%
Hankelets [13] 56.4%

Table 1: Comparison of the overall performance of our aug-
mented approach with our baseline, and the state of the
art [13] on the unsupervised cross-view action recognition
mode of the IXMAS dataset.

It is a common practice in data augmentation approaches
to give different importance to the original and augmented
data [5]. In our case, this importance is controlled by the
slack penalty C of the SVM. Therefore, we use two dif-
ferent slack penalties Corig = 1 and Caug < 1 for origi-
nal and augmented data respectively. This way, we account
for a) the imbalance in the number of examples in original
and augmented data, and b) the fact that the augmented data
might contain errors.

The performance using this approach, as well as our
baseline, is reported in Figure 4. We observe a consistent
improvement in each train-test pair, with only one excep-
tion (pair 3-2). The accuracy improvements per class are
reported in Figure 5. We note that walking receives the best
performance gain, much in line with a) the amount of avail-
able mocap data (i.e. almost every mocap sequence contains
the act of walking), and b) the periodic nature of walking,
which makes it easy to match. However, our approach is
also able to significantly improve results on harder classes
like “scratch head” and “check watch”.

Although we make absolutely no use of annotations in
our experiments, a quick search for the action classes in the
description file of the CMU mocap dataset4 makes it evident
that not all the actions that we are trying to match have been
annotated. Particularly, a search for “check watch”, “cross
arms” and “scratch head” returns no results on the CMU
mocap website. Nonetheless, we are still able to improve
the results on these actions. This finding suggests that our
approach can be used to discover unlabelled actions in large
collections of mocap data.

Parameter tuning. Free parameters of our approach in-
clude the regularization parameter of nCTE, λ, the number
of added mocap frames around the peak match, τ , and the
SVM slack penalty for augmented data, Caug. We report
different results for these values in Figure 6. Increasing τ

4https://sites.google.com/a/cgspeed.com/
cgspeed/motion-capture/cmu-bvh-conversion/
bvh-conversion-release---motions-list

https://sites.google.com/a/cgspeed.com/cgspeed/motion-capture/cmu-bvh-conversion/bvh-conversion-release---motions-list
https://sites.google.com/a/cgspeed.com/cgspeed/motion-capture/cmu-bvh-conversion/bvh-conversion-release---motions-list
https://sites.google.com/a/cgspeed.com/cgspeed/motion-capture/cmu-bvh-conversion/bvh-conversion-release---motions-list


amounts to augmenting the number of frames – from the
matched mocap sequence – that are added to the training
data. We observe that larger values of τ yield marginally
better accuracy, obtaining optimal performance when the
whole matched mocap sequence is added. An important
observation is that we can augment the training data with as
few as 50 (τ = 25) frames, with a marginal loss in perfor-
mance. Caug was set to 0.01 via cross-validation.

5. Conclusions and Future Work

We have demonstrated that unlabelled motion capture
data can help improve cross-view action recognition. View
independence comes from the large amount of multi-view
training data which we match without any additional anno-
tation effort. In the process, we have introduced an inex-
pensive, purely motion-based descriptor that makes mocap
and video data directly comparable.

Regarding future work, we note that despite their similar-
ity mocap and video trajectories are bound to differ in their
distribution; we expect that domain adaptation between the
two will help to improve matching accuracy. Also, the suc-
cess of this approach depends on the availability of a large
enough mocap dataset to cover a wide range of activities, so
we would like to analyse mocap data to account for differ-
ent action combinations. Incorporating geometry informa-
tion is also expected to improve the discriminative power of
υ-trajectories. Finally our approach currently does not deal
with scenarios of camera motion, occlusion due to other ob-
jects in the scene, or multiple actors. These all are interest-
ing areas of future work.
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