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Abstract. We revisit Additive Quantization (AQ), an approach to vector quanti-
zation that uses multiple, full-dimensional, and non-orthogonal codebooks. De-
spite its elegant and simple formulation, AQ has failed to achieve state-of-the-art
performance on standard retrieval benchmarks, because the encoding problem,
which amounts to MAP inference in multiple fully-connected Markov Random
Fields (MRFs), has proven to be hard to solve. We demonstrate that the perfor-
mance of AQ can be improved to surpass the state of the art by leveraging iterated
local search, a stochastic local search approach known to work well for a range
of NP-hard combinatorial problems. We further show a direct application of our
approach to a recent formulation of vector quantization that enforces sparsity of
the codebooks. Unlike previous work, which required specialized optimization
techniques, our formulation can be plugged directly into state-of-the-art lasso op-
timizers. This results in a conceptually simple, easily implemented method that
outperforms the previous state of the art in solving sparse vector quantization.
Our implementation is publicly available.1

1 Introduction

Computer vision applications often involve computing the similarity of many high-
dimensional, real-valued image representations, in a process known as feature match-
ing. When large databases of images are used, this results in significant computational
bottlenecks. For example, in structure from motion [1], it is common to estimate the
relative viewpoint of each image in large collections of photographs by computing the
pairwise similarity of several million SIFT [2] descriptors; it is also now common for
retrieval and classification datasets to comprise millions of images [3, 4].

In practice, the large-scale retrieval problem often translates into large-scale ap-
proximate nearest neighbour (ANN) search and has traditionally been addressed with
hashing [5, 6]. However, a family of methods based on vector quantization has re-
cently demonstrated superior performance and scalability, sparking interest from the
machine learning, computer vision and multimedia retrieval communities [7–12]. These
methods are all based on multi-codebook quantization (MCQ), a generalization of k-
means clustering with cluster centres arising from the sum of entries in multiple code-
books. Other applications of MCQ include large-scale maximum inner product search
(MIPS) [13, 14], and the compression of deep neural networks for mobile devices [15].

Like k-means clustering, MCQ is posed as the search for a set of codes and code-
books that best approximate a given dataset. While early approaches to MCQ were

1 https://github.com/una-dinosauria/local-search-quantization

https://github.com/una-dinosauria/local-search-quantization
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designed enforcing codebook orthogonality [9, 10], more recent methods make use of
non-orthogonal, often full-dimensional codebooks [7, 8, 11]. A problem faced by these
methods is that encoding, in general, becomes NP-hard. Moreover, encoding is to be
performed on large databases and must therefore often be carried out under very tight
time constraints.

We note that the combinatorial optimization community has been dealing with simi-
lar problems for many years, and competitions to solve NP-hard problems as efficiently
as possible (e.g. the SAT competition series [16]) have driven research on fast combi-
natorial optimization methods such as stochastic local search [17] (SLS) and portfolio-
based solvers [18]. Inspired by the combinatorial optimization literature, our main con-
tribution is the introduction of an SLS-based algorithm that achieves low quantization
error and high encoding speed in MCQ. We also discuss a series of implementation
details that make our algorithm fast in practice and demonstrate an application of our
approach that incorporates sparsity constraints in the codebooks.

2 Related work

First, we introduce some notation, following mostly Norouzi and Fleet [19]. Formally,
we denote the set to quantize as X ∈ Rd×n, having n data points with d dimensions
each; MCQ is the problem of finding m codebooks Ci ∈ Rd×h and the corresponding
codes Bi that minimize quantization error, i.e., to determine

min
Ci,Bi

‖X − [C1, C2, . . . , Cm]


B1

B2

...
Bm

‖22, (1)

where Bi = [bi1,bi2, . . . ,bin] ∈ {0, 1}h×n, and each subcode bi is limited to having
only one non-zero entry: ‖bi‖0 = 1, ‖bi‖1 = 1. Letting C = [C1, C2, . . . , Cm] and
B = [B1, B2, . . . , Bm]

>, we can rewrite expression 1 more succinctly as

min
C,B
‖X − CB‖22. (2)

Early work in MCQ can be traced back to the 1980s, when quantization was heavily
studied in the context of compressing signals before transmission [20]. Interest in the
field was renewed in 2010, when Jégou et al. [10] introduced product quantization (PQ),
noticing that quantization could be effectively used to search for nearest neighbours
in high-dimensional spaces. PQ made a codebook orthogonality assumption that has
the advantage of requiring only m table lookups to compute the approximate distance
between a query and a compressed database element. Moreover, optimal encoding is
easily achieved by solving m d/m-dimensional nearest neighbour problems in small
sets of h elements (typically, h = 256). It was later shown [9,19], that a global rotation
of the data can also be easily learned, yielding lower quantization error. This approach
is often called optimized product quantization (OPQ).
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More recently, Babenko and Lempitsky proposed additive quantization (AQ) [7],
which drops the orthogonality assumption of PQ and uses full-dimensional codebooks.
This formulation corresponds to Expression 2 without further constraints and provides
the basis for our work. In spite of achieving superior performance to PQ and OPQ,
the authors quickly noticed two main disadvantages of their approach: first, that encod-
ing (finding B) can be expressed as a large number of hard combinatorial problems
and becomes a major computational bottleneck of the system; second, that distance
computation requires O(m2) (as opposed to m) table lookups, increasing query time
significantly with respect to PQ [7].

In a parallel line of research, Zhang et al. proposed composite quantization (CQ) [11],
which also relaxes the orthogonality constraint of PQ and optimizes for codebooks with
constant inner products: 〈C>i , Cj〉 = ξ, ∀ i, j 6= i ∈ {1, 2, . . . ,m} (notice that, in PQ,
ξ = 0). A crucial advantage of this formulation is that distance computation requires
only m table lookups and thus is directly comparable to PQ. As a side effect, the con-
straint renders the encoding problem easier to solve, and the authors note that using
iterated conditional modes (ICM) with 3 iterations obtains “satisfactory results” [11].

The encoding problem in AQ. Our work focuses on improving the encoding time
and performance of the AQ formulation – that is, given the data X and codebooks
C, we search for a method to find the codes B that minimize Expression 2. Formally,
the encoding problem amounts to MAP inference2 in n fully-connected MRFs with m
nodes each, which in the general case is NP-hard. In these MRFs, the minimum energy
is achieved by finding the subcodes bi that minimize the squared distance between the
vector to encode x, and its approximation x̂:

‖x− x̂‖22 = ‖x−
m∑
i

Cibi‖22 = ‖x‖22 − 2 ·
m∑
i

〈x, Cibi〉+ ‖
m∑
i

Cibi‖22 (3)

where the norm of the approximation ‖x̂‖22 = ‖
∑m

i Cibi‖22 can be expanded as

‖
m∑
i

Cibi‖22 =

m∑
i

‖Cibi‖22 +
m∑
i

m∑
j 6=i

〈Cibi, Cjbj〉. (4)

Posed as an MRF with m nodes, the ‖x‖22 term in (3) can be discarded because
it is a constant with respect to bi; the −2 ·

∑m
i 〈x, Cibi〉 and

∑m
i ‖Cibi‖22 terms are

summed up and become the unary terms, and
∑m

i

∑m
j 6=i〈Cibi, Cjbj〉 becomes the

pairwise terms. Since each code bi may take any value between 1 and h, there are hm

possible configurations for each MRF (typically, m = {8, 16}, and h = 256), which
renders the problem inherently combinatorial and, in general, NP-hard [21].

Solving these MRFs is known to be challenging; in fact, the authors of AQ noted
that “LBP and ICM, and [. . . ] other algorithms from the MRF optimization library [22]
perform poorly” [7]. This has led researchers to resort to expensive construction search
methods such as beam search [7] and has since motivated the search for codebook
structures where exact encoding is efficient [8, 11].

2 Unfortunately enough, MAP inference is often called decoding due to its historical use in the
receiving end of error-correcting codes [20].
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Reducing query time in AQ. As mentioned before, AQ involves major computational
overhead during query time. This occurs when a new query q is received and the dis-
tance to the encoded vectors x̂i has to be estimated. This amounts to evaluating Equa-
tion 3: ‖q− x̂‖22, which, as we have seen, requires O(m2) table lookups for evaluating
the norm of the encoded vector ‖x̂‖22. Babenko and Lempitsky [7] proposed a simple
solution to this problem: use m − 1 codebooks to quantize x, and use an extra byte to
quantize the norm of the approximation ‖x̂‖22. The approximation of the norm is likely
to be very good, as we are then using h = 256 centroids to quantize a scalar. The
downside is that the beam search proposed in AQ becomes very expensive, so in [7],
preference was given to a hybrid approach called Additive Product Quantization (APQ).
APQ, although more tractable in encoding, still incurs considerable overhead at query
time. Promising results for AQ were shown for 64 bit codes on SIFT1M (see AQ-7 in
Figure 5 of [7]) but have since been surpassed by CQ [11]. Our work starts from this
idea and then focuses on improving the encoding process to improve the performance
of AQ beyond the state of the art.

Stochastic local search (SLS) algorithms. Top-performing methods for solving many
NP-hard problems have been, at several points in time, variations of stochastic local
search (SLS), and continue to define the state of the art for solving prominent NP-hard
problems, such as the TSP [23]. Given a candidate solution to a given problem instance,
SLS methods iteratively examine and move to neighbouring solutions. A formal treat-
ment of the subject involves defining neighbourhood functions, characterizing problem
instances and formally defining local search procedures; while this is beyond the scope
of this work, we direct interested readers to [17].

Iterated local search (ILS) algorithms, which form the basis for the algorithm we
propose in this work, alternate between perturbing the current solution s (with the goal
of escaping local minima) and performing local search starting from the perturbed so-
lution, leading to a new candidate solution, s′. At the end of each local search phase, a
so-called acceptance criterion is used to decide whether to continue the search process
from s or s′. In many applications of ILS, including ours described in the following, the
acceptance criterion simply selects the better of s and s′.

A downside of SLS algorithms (and many other heuristic methods that perform
well in practice) is that their theoretical performance has historically proven hard to
analyze. Similar to prominent deep learning techniques, SLS methods often perform far
better than theory predicts, and thus, research in the area is heavily based on empirical
analysis. An attempt to achieve a theoretical breakthrough for our method would be out
of the scope of this work, so instead, we focus on the thorough empirical evaluation of
its performance on a number of benchmarks with varying sizes, protocols and descriptor
types to show the strength of our approach.

3 Iterated local search for AQ encoding

We now introduce our ILS algorithm to optimize B in Expression 2. In addition to the
acceptance criterion stated above, our algorithm is defined by (a) a local search proce-
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dure, (b) a perturbation method to escape local minima, and (c) an initialization method
to create the first solution; we next explain our design choices for these components.

3.1 Local search procedure

As our local search procedure we choose ICM. Although ICM was dismissed in [7] as
poorly performant for the encoding problem, the algorithm has been successfully used
(for solving an admittedly simpler problem) in CQ [11]. ICM offers two key advantages
over other local search algorithms: (i) on the theoretical side, it exhibits very good
speed, and, (ii) in practice, it can be implemented in a way that is amenable to caching
and vectorization. We discuss both advantages in more detail below.

Complexity analysis of ICM. ICM iterates over all the nodes in the given MRF, con-
ditioning the current node on the assignments of other nodes, and minimizing (finding
the mode of) the resulting univariate distribution. In a fully-connected MRF, such as
the one in our problem, each node represents a subcode bi. Thus, ICM cycles through
m subcodes, and conditions its value on the other m − 1 subcodes, adding h terms for
each conditioning. This results in a complexity of O(m2h). Comparing to the beam
search procedure of AQ, which has a complexity of O(mh2(m+ logmh)) [8], we can
see that for typical values of m ∈ {8, 16} and h = 256, a single ICM cycle is much
faster than beam search. This suggests that we can afford to run several rounds of ICM,
which is necessary for ILS, while keeping the overall encoding time low. In practice,
our implementation is 30-50× faster than beam search in AQ3.

Cache hits and vectorization of ICM. While this is not true in general, in our special
case of interest ICM has a second crucial advantage: it can be programmed in a way
that is cache-friendly and easy to vectorize.

In practice, the computational bottleneck of ICM arises in the conditioning step,
when the algorithm looks at all the neighbours of the ith node and adds the assignments
in those nodes to the current one. A naı̈ve implementation, such as that available from
off-the-shelf MRF libraries [22], encodes each data point sequentially, looking up the
pairwise terms fromO(m2) different tables of size h×h. This results in a large number
of cache-misses, as different tables are loaded into cache for each conditioning.

Our key observation from Equation 3 is that only the unary term −2
∑m

i 〈x, Cibi〉
depends on the vector to encode x. Equivalently, it can be seen that the pairwise terms∑m

i

∑m
j 6=i〈Cibi, Cjbj〉 are the same for all the MRFs that arise in the encoding prob-

lem. This means that, during the conditioning step, we can condition all the ith subcodes
in the database w.r.t. the jth subcode, loading only one h×h pairwise lookup table into
cache at a time. This results in better cache performance, is easily vectorized, and dra-
matically speeds up ICM in our case. In practice, this is accomplished by switching the
order of the for loops in ICM over the entire (or a large portion of the) database. We
call this implementation “batched ICM”. Our code is publicly available to facilitate the
understanding of these details.

3 https://github.com/arbabenko/Quantizations

https://github.com/arbabenko/Quantizations
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3.2 ILS Perturbation

In each incumbent solution s, we choose k codes to perturb by sampling without re-
placement from the discrete uniform distribution from 1 to m: ik ∼ U{1,m}. We then
perturb each selected code uniformly at random by setting it to a value between 1 and
h: bik ∼ U{1, h}. This perturbed solution s′ is then used as the starting point for the
subsequent local search phase, i.e., invocation of ICM. While simple, this perturbation
method is commonly used in the SLS literature [17]. We note that our approach gen-
eralizes previous work where ICM was used but no perturbations were applied [7, 11],
which corresponds to setting k = 0. This method is both effective and very fast in
practice: compared to ICM, the time spent in this step is negligible.

3.3 ILS Initialization

We use a simple initialization method, setting all the codes to values between 1 and h
uniformly at random: bi ∼ U{1, h} ∀i ∈ {1, 2, . . . ,m}. We also experimented with
other initialization approaches, such as using FLANN [24] to copy the codes of the
nearest neighbour in the training dataset, or using the code that minimizes the binary
terms (which are expected to dominate the unary terms for large m). However, we did
not observe significant improvements over our random initialization after a few rounds
of ILS optimization.

Like AQ, we initialize our C and B by running OPQ, followed by a method similar
to OTQ [8], but simplified to assume that the dimension assignments are given by a
natural partition of adjacent dimensions.

4 The advantages of a simple formulation: easy sparse codebooks

Our approach, building on top of AQ, benefits from using a simple formulation with
no extra constraints (Expression 2). The advantages of a simple formulation are not
merely aesthetic; in practice, they result in a straightforward optimization procedure
and less overhead for the programmer. Furthermore, a more standard formulation might
render the problem more amenable to being solved using state-of-the-art optimizers. We
now demonstrate one such use case, by implementing a recent MCQ formulation that
enforces sparsity on the codebooks [12].

Motivation for sparse codebooks. Zhang et al. [12] motivate the use of sparse code-
books in the context of very large-scale applications, which deal with billions of data-
points and are better suited for search with an inverted-index [25–27]. In this case, the
time spent computing the lookup tables becomes non-negligible, which is specially true
for methods that use full-dimensional codebooks, such as CQ [11], AQ [7] and, by ex-
tension, ours. For example, Zhang et al. have demonstrated that enforcing sparsity in
the codebooks can lead up to 30% speedups with a state-of-the-art inverted index [27]
on the SIFT1B dataset (see Table 2 in [12]). This method is called Sparse CQ (SCQ).

There is a second use case for sparse codebooks. Recently, André et al. [28] have
demonstrated that PQ scan and other lookup-based sums, such as those in our approach,
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can take advantage of vectorization. The authors have shown up to 6× speedups on dis-
tance computation, thus emphasizing further the time spent computing distance tables
even for datasets with a few million data points, where linear scanning is the preferred
search procedure.

Solving the sparsity constraint. Formally, the sparsity constraint on the codebooks
amounts to determining

min
C,B
‖X − CB‖22 s.t. ‖C‖0 ≤ S. (5)

Unfortunately, minimizing a quadratic function with an `0 constraint is non-convex and,
in general, hard to solve directly. Thus, the problem is often relaxed the minimize the
convex `1 norm. Our objective then becomes to determine

min
C,B
‖X − CB‖22 s.t. ‖C‖1 ≤ λ. (6)

In SCQ [12], the problem becomes even harder, because on top of sparsity, the codebook
elements are forced to have constant products. For this reason, SCQ uses an ad-hoc soft-
thresholding algorithm to solve for C. Our problem is simpler, because we do not have
to satisfy the inter-codebook constraint and can be posed as an `1-regularized least-
squares problem. To achieve this, we rewrite Expression 6 as

min
C,B
‖B>C> −X>‖22 s.t. ‖C‖1 ≤ λ, (7)

and it becomes apparent that the approximation of the ith column of X> depends only
on product of B> and the ith column of C>. Thus, we can rewrite Expression 7 as

min
C,B
‖B̂ĉ− x̂‖22 s.t. ‖ĉ‖1 ≤ λ, (8)

where

B̂ =


B>(1) 0 . . . 0

0 B>(2) . . . 0
...

. . .
...

0 0 . . . B>(d)

 , ĉ =


c>1
c>2
...
c>d

 , and x̂ =


x>1
x>2

...
x>d

 . (9)

Here, B>(i) is the ith copy of B>, ci is the ith row of C, and xi is the ith row of X .
This formulation corresponds to the well-known lasso. Nearly two decades of research
in the lasso have produced many robust and scalable off-the-shelf optimization routines
for this problem. Our approach, as opposed to previous work, lacks extra constraints
and thus can directly take advantage of such procedures with little overhead to the
programmer. For example, it took us less than an hour to integrate the SPGL1 solver
by van den Berg and Friedlander [29] into our pipeline. This solver has the additional
advantage of not requiring an explicit representation of B̂, but can instead be given a
function that evaluates to B̂ĉ – this can be implemented as a for loop, so we only need
to store one copy of the codes B> in memory. Note that SPGL1 is only used to find
the codebooks C; finding the codes B is still done using our previously described ILS
procedure.
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5 Experimental setup

Evaluation protocol. We follow previous work and evaluate the performance of our
system with recall@N [7–11]. Recall@N produces a monotonically increasing curve
from 1 to N representing the empirical probability, computed over the query set, that
the N estimated nearest neighbours include the actual nearest neighbour in the database.
The goal is obtain the highest possible recall for given N. In information retrieval, re-
call@1 is considered the most important number on this curve. Also in line with pre-
vious work [7–12], in all our experiments, the codebooks have h = 256 elements, and
we show results using 64 and 128 bits for code length.

We compute approximate squared Euclidean distances applying the expansion of
Equation 3, and we use only 7 and 15 codebooks to store codebook indices, while the
last 8 bits are dedicated to quantize the (scalar) squared norm of each database entry. In
all our experiments, we run our method for 100 iterations and use asymmetric distance,
i.e., the distance tables are computed for each query, as in all our baselines.

Baselines. We compare our approach to previous work, controlling for two critical fac-
tors in large-scale retrieval: code length and query time. To control for code length, we
use subcodebooks with h = 256 entries and produce final codes of 64 and 128 bits. To
control for query time, we restrict our comparison to methods that require m = {8, 16}
table lookups to compute approximate distances. Thus, we compare against PQ [10],
OPQ [9] and CQ [11], as well as the AQ-7 method presented in [7] (i.e., the original
formulation of AQ that we are building on). For PQ and OPQ, we use the publicly
available code of Mohammad Norouzi4, and we reproduce the results reported on the
original papers introducing CQ [11] and AQ [7]. We compare our sparse extension
against SCQ [12], which is to our knowledge the only paper on the subject.

Another baseline that we could compare against is the recently introduced Opti-
mized Tree Quantization (OTQ) [8]. OTQ learns a tree structure of the codebooks where
encoding can be performed exactly using dynamic programming, and has demonstrated
competitive results on SIFT1M. The method, however, requires 2m − 1 table lookups
to compute approximate distances during query time, so it does not fit the query time
criterion that we are controlling for in our experiments.

Datasets. We tested our method on 6 datasets. Three of these, SIFT1M, SIFT10M
and SIFT1B [10], consist of 128-dimensional gradient-based, hand-crafted SIFT fea-
tures. We also collected a dataset of 128-dimensional deep features using the CNN-M-
128 network provided by Chatfield et al. [30], computing the features from a central
224× 224 crop of the 1.3M images of the ILSRVC-2012 dataset and then subsampling
uniformly at random from all classes. It is known that deep features can be effectively
used as descriptors for image retrieval [31,32], and Chatfield et al. have shown that this
intra-net compression results in a minimal loss of performance [30]. SIFT1M and Con-
vnet1M both have 100 000 training vectors, 10 000 query vectors and 1 million database
vectors. SIFT1B has 100 million vectors for training, and 1 billion vectors for base, as

4 https://github.com/norouzi/ckmeans

https://github.com/norouzi/ckmeans
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Fig. 1. Quantization error as a function of ILS iterations, ICM iterations and number of codes
perturbed k on 10 000 vectors of the SIFT1M train dataset after random initialization. The number
of ICM iterations increases in 1, 2, 4, and 8 to the right, and we plot the quantization error for
64 ICM iterations in total – thus, the plots are comparable in amount of computation. Using 4
perturbations and 4 ICM iterations gives good results in all cases, so we use those parameters in
all our experiments. Using no perturbations (k = 0), as done in previous work [7,11,12], leads to
values that are above all the plots that we are showing, and stagnates after about 3 ICM iterations.

well as 10 000 queries. On SIFT1B, we followed previous work [9, 11] and used only
the first 1 million vectors for training. Better results on SIFT1B can be obtained using an
inverted index, but we did not implement this data structure as we focus on improving
encoding performance. This also has the added benefit of making our results directly
comparable to those shown in CQ [11] and OPQ [19]. With SIFT10M, we followed the
same protocol, but only the 10 million first vectors of SIFT1B as base.

We also use 2 datasets where CQ, our closest competitor, was benchmarked: MNIST
and LabelMe22K [33]. MNIST is 784-dimensional, and has 10 000 vectors for query
and 60 000 vectors for base. LabelMe22K is 512-dimensional and has 2 000 vectors for
query and 20 019 vectors for base.

Different datasets have different partitions, and this leads to important differences in
the way learning and encoding are performed. The classical datasets SIFT1M, SIFT10M
and SIFT1B [10], as well as our Convnet1M dataset have three partitions: train, query
and database. In this case, the protocol is to first learn the codebooks using only the
train set, then use the learned codebooks to encode the database, and finally evaluate
recall@N of the queries w.r.t. the database. We refer to this partition as train/query/base.

However, several earlier studies used only two partitions of the data: query and
database. In this case, the iterative codebook learning procedure is run directly on the
database, and recall@N is evaluated on the queries w.r.t. the database thereafter. For
example, Locally Optimized PQ [34] was evaluated using this partition on SIFT1B by
simply ignoring the training set, and CQ was evaluated on MNIST and LabelMe22K
using the train/test partitions that the datasets provide for classification [11]. It has also
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Fig. 2. Recall@N curves for (left) the SIFT1M, and (right) Convnet1M datasets.

SIFT1M – 64 bits

R@1 R@10 R@100

PQ 22.53± 0.31 60.14± 0.41 91.99± 0.17

OPQ 24.34± 0.52 63.89± 0.30 94.04± 0.08

AQ-7 [7] 26 70 95

CQ [11] 29 71 96

LSQ-16 29.37± 0.18 72.54± 0.26 97.27± 0.14

LSQ-32 29.79± 0.26 73.12± 0.20 97.49± 0.09

SIFT1M – 128 bits

R@1 R@2 R@5

PQ 44.62± 0.47 60.54± 0.61 78.88± 0.30

OPQ 46.05± 0.25 62.05± 0.21 80.59± 0.31

AQ-15 [7] − − −
CQ [11] 54 71 88

LSQ-16 54.47± 0.37 71.74± 0.33 88.21± 0.48

LSQ-32 55.28± 0.21 72.26± 0.36 88.93± 0.14

Table 1. Detailed recall@N values for our method on the SIFT1M dataset.

been argued that this partition is better suited for learning inverted indices on very large-
scale datasets (see the last paragraph of [27]). We refer to this partition as query/base.

Parameter settings. Our approach needs to set the number of ILS iterations (i.e., the
number of times a solution is perturbed and local search is done). At the same time,
ICM may cycle through the nodes a number of times, which we call ICM iterations.
Finally k, the number of elements to perturb, also needs to be defined.

We chose our parameters using a held-out subset of the training set of SIFT1M,
keeping the values that minimize quantization error. Figure 1 shows the results of our
parameter search on 10 000 SIFT descriptors. We note that, given the same amount of
ICM cycles, using 4 ICM iterations and perturbing k = 4 code elements results in good
performance. We observed similar results on other descriptor types, so we used these
values in all our experiments. As shown in Figure 1, the performance of our system
depends on the number of ILS iterations used, trading-off computation for recall. We
evaluated our method using 16 and 32 ILS iterations on the base set of train/query/base
datasets, and refer to these methods as LSQ-{16, 32}. During training, we used only 8
ILS iterations.

Implementation details and reproducible research. We implemented all our code
in Julia [35], a recent high-level language for scientific computing, making use of the
@inbounds and @simdmacros in performance-critical parts of the code. All reported
running times were measured using a single core on a computer with 64 GB of RAM
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Fig. 3. Recall@N curves for (left) the MNIST, and (right) LabelMe22K datasets.

MNIST – 64 bits

R@1 R@2 R@5

PQ 30.39± 0.28 45.70± 0.39 67.79± 0.46

OPQ 37.81± 0.63 55.23± 0.44 78.10± 0.46

CQ [11] 44 63 84

LSQ-4 45.13± 0.50 63.98± 0.70 85.58± 0.40

LabelMe22K – 64 bits

R@1 R@2 R@5

PQ 17.05± 0.53 24.90± 0.48 38.78± 1.19

OPQ 32.96± 0.51 46.29± 0.68 66.80± 0.55

CQ [11] 35 51 71

LSQ-4 35.69± 1.10 50.32± 1.46 71.05± 1.31

Table 2. Detailed recall@N values for our method on the MNIST and LabelMe22K datasets.

and an Intel i7-3930K CPU, which runs at 3.2 GHz and has 12 MB of cache. To render
our results reproducible, all our code and data are publicly available.

6 Results

Since our method relies heavily on randomness for encoding, it is natural to think that
the final performance of the system could exhibit large variance. To quantify this effect,
we ran our method 5 times on each dataset, and report the mean and standard devia-
tion in recall@N achieved by our method. To see how this compares to previous work,
we ran PQ and OPQ5 5 times (as for our method), and report their mean and standard
deviation in recall@N as well. We observe that LSQ, despite relying heavily on ran-
domness for encoding, exhibits a variability in recall similar to that of PQ and OPQ
(and presumably that of other baselines as well).

This is consistent with the fact that LSQ solves a large number of independent in-
stances of combinatorial optimisation problems of similar difficulty; in situations like
this, the solution qualities achieved within a fixed running time are typically normally
distributed ( [17], Ch.4). In other words, despite being heavily randomized, the perfor-
mance of our system turns out to be very stable in practice, because it is averaged over
a large number of data points.

5 PQ has randomness in the k-means initialization, and the OPQ code by Norouzi & Fleet
chooses a random initial set of cluster centers.
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Fig. 4. Recall@N curves for very large-scale datasets: (left) the SIFT10M, and (right) SIFT1B.

Small training/query/base datasets. First, we report the recall@N results for SIFT1M
and Convnet1M in Figure 2, where it is immediately clear that LSQ outperforms the
classical baselines, PQ and OPQ in recall@N for all values of N. Similarly, our method
outperforms CQ when using 16 ILS iterations, and the gap is widened when using
32 iterations. As we will see, analogous effects are observed throughout our results.
In Table 1 we show our results in more detail, providing mean recall@N values and
standard deviations for the SIFT1M dataset.

On Convnet1M, the advantage of LSQ over PQ/OPQ is more pronounced. When
using 64 bits, our method achieves a recall of 18.64, more than double that of PQ at 7.13,
and with an 81% improvement over OPQ at 10.28. These results show an increased
advantage of our method over orthogonal approaches like PQ/OPQ in deep-learned
features, which are expected to dominate computer vision applications in coming years.

Query/base datasets. In Figure 3, we report results on datasets with query/base par-
titions: MNIST and LabelMe22K. Despite requiring less computation in these datasets
(only 4 ILS iterations, instead of 16-32), our method still outperforms the state of the
art on MNIST, and performs on pair with CQ on LabelMe22K

Very large-scale training/query/base datasets. Finally, we report results on two very
large-scale datasets: SIFT10M and SIFT1B in Figure 4, with detailed results in Table 3.
Interestingly, the performance gap between our method and our baselines is more pro-
nounced in these datasets, suggesting that the performance advantage of LSQ increases
for larger datasets (as opposed to OPQ, whose gap over PQ consistently shrinks when
more data is available). On SIFT1B with 64 bits, LSQ-32 shows a relative improvement
of 13% in recall@1 over CQ, our closest competitor, and consistently obtains between
2 and 3 points of advantage in recall over CQ in other cases. These are, to the best of
our knowledge, the best results reported on SIFT1B using exhaustive search so far.

Sparse extension. Following Zhang et al. [12], we evaluated the sparse version of our
method using 2 different levels of sparsity: SLSQ1, with ‖C‖0 ≤ S = h · d, which
has a query time comparable to PQ, and SLSQ2, with ‖C‖0 ≤ S = h · d + d2, which
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SIFT10M – 64 bits SIFT10M – 128 bits

R@1 R@10 R@100 R@1 R@2 R@5

PQ 15.79 50.86 86.57 39.31 54.74 74.89

OPQ 17.49 54.92 89.41 40.80 56.73 77.15

CQ [11] 21 63 93 47 64 84

LSQ-16 22.51 64.62 94.67 49.26 66.75 85.36

LSQ-32 22.94 65.20 94.85 49.50 67.31 86.33

SIFT1B – 64 bits SIFT1B – 128 bits

R@1 R@10 R@100 R@1 R@2 R@5

PQ 06.34 24.41 56.92 26.38 38.57 56.45

OPQ 07.02 27.34 61.89 28.43 40.80 59.53

CQ [11] 09 33 70 34 48 68

LSQ-16 09.73 35.82 73.84 35.32 50.84 70.66

LSQ-32 10.18 36.96 75.31 36.35 51.99 72.13

Table 3. Detailed recall@N values for our method on large-scale datasets: SIFT10M and SIFT1B.
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Fig. 5. Recall@N curves for our sparse meth-
ods SLSQ1 and SLSQ2 on SIFT1M.

SIFT1M – 64 bits

R@1 R@10 R@100

PQ 22.53± 0.31 60.14± 0.41 91.99± 0.17

SCQ1 [12] 25 67 95

SLSQ1-16 25.88± 0.31 66.69± 0.38 95.26± 0.14

SLSQ1-32 26.36± 0.20 67.61± 0.08 95.66± 0.07

OPQ 24.34± 0.52 63.89± 0.30 94.04± 0.08

SCQ2 [12] 27 68 96

SLSQ2-16 28.04± 0.40 70.10± 0.25 96.56± 0.08

SLSQ2-32 28.72± 0.16 70.94± 0.32 96.81± 0.08

Table 4. Recall@N values for the sparse exten-
sion of our method on SIFT1M using 64 bits.

has a query time comparable to OPQ. We compare against SCQ1 and SCQ2 from [12],
which have the same levels of sparsity. We focus on SIFT1M; as noted in Section 4,
substantial speedups can be obtained on small datasets by using sparse codebooks.

Again, in this scenario we observed improved performance compared to our base-
lines. While when using dense codebooks our method achieved a small gain of 0.79
in recall@1 over CQ, in this case the improvement jumps to 1.36 and 1.72 over SCQ.
This is comparable to the 1.80 gain that OPQ achieves over PQ, and virtually equalizes
the performance of CQ at 29: compared to CQ, our SLSQ2-32 method only loses 0.28
points in recall when using sparse codebooks (and thus having lower query time).

Encoding speed and comparison to CQ. In Table 5 we show the speed advantage
that sharing the pairwise terms gives to LSQ over a naı̈ve implementation that encodes
each point sequentially. The table shows that our method, implemented in a high-level
language, remains fast when using up to 32 ILS iterations, handily achieving speeds
faster than real-time (we believe that even better performance could be achieved with
a C implementation). We also implemented a version of our method using an Nvidia
GTX Titan X GPU. It took a novice CUDA developer about 2 days to complete this
implementation, which again highlights the simplicity of our method (and suggests that
better speeds are possible). Using this implementation, it is possible to encode SIFT1B
using 128 bits and 32 ILS iterations in around 1.5 days.

Looking at our results, it is clear that our main competitor is CQ [11]. Our method
has demonstrated higher recall on all datasets and benefits from a simpler formulation.
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Method Sequential Batched

codebooks (m) 7 15 7 15

LSQ-16 (ms.) 1.52 7.02 0.53 2.01

LSQ-32 (ms.) 3.01 13.93 1.05 4.03

Method GPU (batched)

codebooks (m) 7 15

LSQ-16 (µs) 17.9 67.2

LSQ-32 (µs) 35.7 134.3

Method Exhaustive NN

codebooks (m) 8 16

PQ (µs) 42.6 77.9

OPQ (µs) 49.2 90.3

Table 5. Time spent per vector during encoding in our approach. “Sequential” refers to an LSQ
implementation where ICM encodes each point sequentially (i.e., does not take advantage of the
shared pairwise terms). “Batched” is our LSQ implementation, which performs conditioning of
shared pairwise terms among several data points.

Being free of additional constraints, our method is also better suited to make use of
state-of-the-art L1 optimizers in the sparse codebook case, where we have also demon-
strated state-of-the-art performance. Perhaps the most obvious downside of our method
is encoding time. While CQ mentions using 3 ICM iterations, our method uses either
16, 64 or 128 iterations. In query/base partitions, we use 16 ICM iterations in total,
which is not too large an overhead over the 3 iterations of CQ. Importantly, this proto-
col has been suggested as the most suitable for very large-scale datasets with inverted
indices [27, 34]. Regarding training/query/base partitions, the 64 and 128 ICM itera-
tions of our method may appear to be a large overhead over CQ. However, we note that
unlike CQ, our method does not require dataset-specific hyperparameter optimization.
The authors of CQ have optimized the penalty parameter of L-BFGS for recall [11,12],
which means the the method is actually run several times to find the best parameter
value. In contrast, our method uses the same parameter settings for all datasets and
only focuses on minimizing quantization error. CQ tries out ∼ 10 different values of its
hyperparameter6, and thus ICM is run ∼ 30 times. In that case, our method has only
a 2 − 4× overhead over CQ in training/query/base partitions, and is overall faster in
query/base datasets. In any case, in a practical application one may always resort to our
GPU implementation to offset the one-time cost of database encoding.

7 Conclusion

We have introduced a new method for solving the encoding problem in AQ based on
stochastic local search (SLS). The high encoding performance of our method demon-
strates that the elegant formulation introduced by AQ can be leveraged to achieve an
improvement over the current state of the art in multi-codebook quantization. We have
also shown that our method can be easily extended to accommodate sparsity constraints
in the codebooks, which results in another conceptually simple method that also out-
performs its competitors.
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