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Abstract. We focus on the problem of vector compression using multi-
codebook quantization (MCQ). MCQ is a generalization of k-means
where the centroids arise from the combinatorial sums of entries in mul-
tiple codebooks, and has become a critical component of large-scale,
state-of-the-art approximate nearest neighbour search systems. MCQ is
often addressed in an iterative manner, where learning the codebooks
can be solved exactly via least-squares, but finding the optimal codes
results in a large number of combinatorial NP-Hard problems. Recently,
we have demonstrated that an algorithm based on stochastic local search
for this problem outperforms all previous approaches. In this paper we
introduce a GPU implementation of our method, which achieves a 30×
speedup over a single-threaded CPU implementation. Our code is pub-
licly available.1

1 Introduction

Approximate nearest neighbour search is often a computational bottleneck of
computer vision and machine learning applications. For example, in structure
from motion [1] (the task of reconstructing the 3d structure of a scene given
multiple images), the bottleneck arises when computing the relative location of
several image pairs, which amounts to nearest neighbour searches in datasets of
millions of SIFT [2] descriptors. Another task where nearest-neighbour search
is the computational bottleneck is image retrieval, also known as image-based
image search; in this task we are given an image of an object, and the goal is to
find similar objects in a large collection of images. In practice, this amounts to
finding the nearest neighbours of the descriptor of the image query among the
stored descriptors of the images in the database.

In the past, the nearest-neighbour problem has been addressed using data
structures that, with high confidence, prune the number of vectors to which the
distance has to be computed. Two prominent examples of this approach include
randomized kd-trees and hierarchical k-means (both implemented in the very
successful FLANN library [3]). These approaches, however, do not scale well for
large datasets, as they need to store all the database vectors in memory, and
incur additional memory costs for the data structures that they use.

In the light of memory limitations, hashing approaches have become increas-
ingly popular [4, 5]. Hashing aims to learn a compact embedding of the data

1 https://github.com/una-dinosauria/local-search-quantization

https://github.com/una-dinosauria/local-search-quantization
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whose Hamming distance (which can be computed very fast using the popcount

operation of modern processors) approximates the Euclidean distance of two
original vectors.

Recently, however, it has been demonstrated that hashing approaches are
significantly less accurate than multi-codebook quantization (MCQ) methods.
Multi-codebook quantization is a generalization of k-means where, instead of
assigning each point to a single centroid, a vector is assigned to multiple code-
books. The indices of such assignments can be used as a compact representation
for the original vector, and the codes can be used to compute approximate dis-
tances to previously-unseen vectors using a few table lookups.

In this work we focus on a variant of MCQ known as Additive Quantization
(AQ) [6], which has a simple, constraint-free formulation, but has proven hard
to optimize. We have recently demonstrated [7] that the AQ formulation can
be lifted to achieve state-of-the-art performance on a series of standard retrieval
benchmarks by leveraging an encoding algorithm based on stochastic local search
(SLS) [8]. In this work, we explore a GPU implementation of such algorithm that
has allowed us to run our method on very large-scale datasets, and has lead us
to obtain state-of-the-art performance on SIFT1B – a dataset of 1 billion visual
descriptors.

2 Related work

The work that introduced the idea of using vector quantization for nearest neigh-
bour search was [9], and is called product quantization (PQ). In PQ, the opti-
mization is actually trivial because the codebooks are assumed to be orthogonal
to each other. A recent improvement to PQ was introduced by Babenko and
Lempitsky [6], and is called additive quantization (AQ). In AQ, the codebooks
are full-dimensional, which makes the encoding problem NP-hard. Babenko and
Lempitsky suggested using beam search to solve the encoding problem, but this
was identified as the main computational bottleneck of the system. Moreover, the
performance of AQ has been largely surpassed by composite quantization [10],
a method that also uses full-dimensional codebooks, but enforces the products
of centroids in different codebooks to be constant.

Our main contribution is a method that solves the encoding problem in AQ
using Stochastic Local Search. As we will show, this encoding problem is equiv-
alent to multiple fully-connected pairwise Markov random fields (MRFs). MRFs
are widely used in computer vision, where they are often used to model visual
context. For example, Tung and Little [11] use an MRF to perform scene pars-
ing (i.e., labelling every pixel in an image) on city landscapes, and Krähenbühl
and Kultun [12] use filtering to perform MAP inference on MRFs with binary
terms which are restricted to be Gaussian kernels, and apply their optimization
method to scene parsing on natural images.
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2.1 MRF optimization on the GPU

There has been some previous work on porting different MRF optimization al-
gorithms to the GPU. For example, Vineet and Narayanan [13] introduce CU-
DACuts, a CUDA-based implementation of graph cuts, an algorithm for exact
MRF optimization that is applicable to submodular MRFs. The method exploits
shared memory in the push-relabel step of graph cuts, and is demonstrated on
a Nvidia GTX 280 GPU. Zach et al. [14] introduce a data-parallel approach
to MRF optimization based on plane sweeping, which is applicable when the
pairwise terms follow a Potts prior. The work dates back to 2008, when CUDA
was a more difficult language to program in than it is today, so the authors
used the OpenGL API to program their solution. The authors demonstrate an
implementation on an Nvidia Geforce 8800 Ultra GPU.

Most previous work focuses on MRFs as they are applied to image-related
tasks such as scene segmentation. In these applications, the MRFs typically
have a large number of nodes (1 per pixel), have a low number of labels (e.g.,
3 in [14]), are sparsely connected, and have special constraints on form of their
pairwise terms (e.g. Potts in [14] and submodular in [13]). Thus, it is unlikely that
those implementations will fit our problem, which has a low number of nodes
m = {7, 15}, a large number of labels (h = 256), is densely connected, and
whose pairwise terms do not follow any particular formulation. Moreover, in our
application all the MRFs share the pairwise terms, which is a rare occurrence
in other MRF applications. We believe that the implementation that we are
introducing in this paper is the first one to address this particular MRF case
using graphics processors.

3 Problem formulation

First, we introduce some notation, following mostly Norouzi and Fleet [15]. For-
mally, we denote the set to quantize as X ∈ Rd×n, having n data points with d
dimensions each; MCQ is the problem of finding m codebooks Ci ∈ Rd×h and
the corresponding codes Bi that minimize quantization error:

min
Ci,Bi

‖X − [C1, C2, . . . , Cm]


B1

B2

...
Bm

‖22, (1)

where Bi = [bi1,bi2, . . . ,bin] ∈ {0, 1}h×n, and each subcode bi is limited to hav-
ing only one non-zero entry: ‖bi‖0 = 1, ‖bi‖1 = 1. Letting C = [C1, C2, . . . , Cm]

and B = [B1, B2, . . . , Bm]
>

, we can rewrite expression 1 more succinctly as

min
C,B
‖X − CB‖22. (2)

It can be seen that, if we have only m = 1 codebooks, then the problem is
reduced to k-means. This suggests an EM-like optimization for Eq. 2 inspired
by Lloyd’s algorithm – a popular method used to solve k-means.
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3.1 Iterative optimization

MCQ, as stated in Eq. 2 is non-convex and, in general NP-hard. The standard
approach to solve this problem is an iterative 2-step process known as coordinate
descent, akin to Lloyd’s algorithm widely used in k-means. We iteratively solve
two sub-problems

1. Ct+1 = minC‖X − CBt‖22 (codebook update)
2. Bt+1 = minB‖X − Ct+1B‖22 (encoding).

Subproblem 1 is a quadratic program over C, and amounts to solving large-
scale least-squares problem. In this paper we focus on subproblem 2 which, on
the other hand, amounts to solving n independent NP-hard problems that can be
expressed as fully-connected Markov Random Fields (MRFs). We now explain
how this formulation is derived.

3.2 MCQ encoding as MAP estimation in multiple MRFs

To make the formulation of MCQ encoding as MRFs more evident, we focus on
the problem of finding the codes [b1,b2, . . . ,bm] that best approximate a single
vector in x. The goal in this case is to minimize the distance between x and its
approximation x̂:

min
x̂
‖x− x̂‖22 = min

x̂
‖x‖22 − 2〈x, x̂〉+ ‖x̂‖22 (3)

In MCQ, the approximation x̂ is constrained to be the sum of single entries in
m different subcodebooks Ci; that is, x̂ =

∑m
i=1 Cibi, therefore, we can rewrite

the previous equation – during the encoding phase – as a minimization over the
subcodebooks bi that represent x̂

min
{b1,b2,...,bm}

‖x−
m∑
i=1

Cibi‖22 = ‖x‖22 − 2〈x,
m∑
i=1

Cibi〉+ ‖
m∑
i=1

Cibi‖22 (4)

= ‖x‖22 − 2

m∑
i=1

〈x, Cibi〉+ ‖
m∑
i=1

Cibi‖22. (5)

Finally, we expand the norm of the approximation as

‖
m∑
i=1

Cibi‖22 =

m∑
i=1

‖Cibi‖22 +

m∑
i

m∑
j 6=i

〈Cibi, Cjbj〉 (6)

It now becomes apparent that we can express the objective function as a
sum of unary (univariate) and pairwise (bi-variate) terms. First of all, we can
drop the ‖x‖22 term, because it is not a function of bi. Next, we can sum
both −2

∑m
i=1〈x, Cibi〉 and

∑m
i=1‖Cibi‖22, which are both functions of a sin-

gle code bi, and make them the unary term of our MRF. Finally, the term
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i

∑m
j 6=i〈Cibi, Cjbj〉, which is a function of two codes, becomes our pairwise

term. Since there is a term for every pair of codes, the resulting MRF is fully
connected.

For each vector that we are encoding, the codes may take any value from
1 to h; thus our search space consists of hm possible solutions (typically, m =
{7, 15} and h = 256), which renders the problem inherently combinatorial and,
in general, NP-Hard.

Not only is each problem hard, but the number of problems, n, usually scales
with big data. For example, imagine that we want to build a visual search engine
that searches for visual content on every image on the Internet – in that case,
n can easily be in the order of several trillions. The scale of this problem calls
for methods that are effective (i.e., achieve low-cost solutions), and efficient (do
so without taking much time). We also need to make use of state-of-the-art
computational resources to tackle the problem within reasonable timelines. In
this paper, we present a GPU implementation of a promising algorithm that
addresses this problem.

4 Solution methodology

Our approach to MCQ encoding is based on stochastic local search (SLS), a
prominent class of algorithms that have, at several points in time, achieved
state-of-the-art performance on several NP-hard problems. The basic idea behind
SLS is to iteratively alternate between a greedy (local) search procedure, and
randomized perturbations to the current solution. SLS methods are typically
anytime, trading off computation for solution quality, and are also often easy to
implement.

Our algorithm is defined by
1. An initialization procedure
2. A perturbation procedure
3. A local search algorithm
4. An acceptance criterion

Our initialization procedure gives a starting solution by initializing each sub-
code uniformly at random between 1 and h – this gives rise to an initial solution
s. Similarly, our perturbation procedure takes the current solution, and changes
k ≤ m subcodes to uniformly random values between 1 and h. Our local search
algorithm is iterated conditional modes (ICM); an iterative algorithm itself that
updates each subcode to its optimal value, while keeping the rest fixed. After
perturbation and local search, we have a candidate solution s′. Our acceptance
criterion simply keeps the solution with lower cost out of s and s′.

The pseucodode for our solution is given in the appendix as Algorithm 1.

4.1 Implementating SLS for encoding

The initial implementation of our algorithm was done in Julia [16], a recent high-
level language for scientific computing that runs on top of the LLVM compiler



6 Martinez J., Hoos, H.H, Little J. J.

infrastructure2, and as such is more suitable for low-level optimization. This
implementation makes use of SIMD instructions where possible, and was heavily
profiled and optimized.

A crucial observation that we obtained during the development of this single-
threaded implementation was the importance of cached memory access when
implementing ICM. In order to explain this subtlety, it is necessary that we talk
about lookup tables in our implementation.

Shared pairwise tables As we have mentioned, the objective function in en-
coding can be broken down in unary (single-parameter) and pairwise (two-
parameter) terms – in fact, this is the easiest way to show that the problem
is equivalent to an MRF. A first observation is that, although we have n dif-
ferent MRFs to solve, they all actually share the same binary terms. That is,
the expression

∑m
i

∑m
j 6=i〈Cibi, Cjbj〉 is independent of x, the vector that we

are encoding. This means that we can precompute the values of the expression∑m
i

∑m
j 6=i〈Cibi, Cjbj〉 for all the possible values of Cibi and Cjbj . For m code-

books, we have in total m · (m− 1)/2 tables of size h× h. Handily, these tables
are computed once and reused for all the MRFs that we are solving. For large
n, the cost of computing these tables is negligible.

Unary tables The unary terms in our formulation correspond to the terms
−2

∑m
i=1〈x, Cibi〉 and

∑m
i=1‖Cibi‖22. While the second unary term is indepen-

dent of the encoded vector, x, the first term actually has to be computed for
each vector that we are encoding. To speed up SLS, we compute m tables of size
h× 1 that store the sum of both unary terms for each value of bi ∈ {1, 2, . . . , h}
for each i ∈ {1, 2, . . . ,m}.

Batched implementation A straightforward implementation of Algorithm 1
encodes each point sequentially. The innermost statement of the algorithm, that
is, the search for the best value of a single code given the rest (line 19), becomes
the computational bottleneck of the system. Moreover, one can see that every
time the expression

bk := arg min
bk

−2〈x, Ckbk〉+ ‖Ckbk‖22 +

m∑
i 6=k

〈Ckbk, Cibi〉 (7)

is evaluated for different k, a different pairwise h × h lookup table has to be
loaded into cache. A straightforward optimization for cache performance of this
bottleneck results from optimizing multiple codes at the same time. This is a
common pattern in large-scale machine learning systems, which are typically
throughput – not latency – oriented, and is commonly known as “batching”.
This results in about 4× speedup in our CPU implementation, and is also used
in our GPU implementation.

2 http://llvm.org/

http://llvm.org/
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CUDA kernel breakdown Our GPU implementation consists of three main
kernels: (a) a setup kernel, which initializes the solutions, computes unary lookup
tables and creates a series of random number generators; (b) a perturbation
kernel, which alters random codes in the solution, and (c) a local search kernel,
which implements ICM.

Initialization kernel Our initialization kernel creates a CUDA random (curand)
state for each data point in the database and, during the first iteration, uses
the samples to create a random initial solution. The implementation is fairly
straightforward and takes less than 1/1000 of the total optimization time.

Perturbation kernel In this kernel, we have one thread per data point, with the
goal of maximizing the work/thread ratio. The task of each kernel is to choose
k = 4 (choosen via validation) entries in the current solution, and perturb them
to random values between 1 and h.

The main challenge in this kernel is that the choice of k = 4 entries to
perturb amounts to sampling without replacement from the uniform distribu-
tion between 1 and m. Since there are no off-the-shelf functions for sampling
without replacement in the curand library, we implemented our own version of
reservoir sampling3. The pseudocode for this kernel is shown in the appendix as
Algorithm 2.

It is easy to show by induction that each code has an equal probability k/m of
being perturbed, and the algorithm finishes when k samples have been perturbed
– which is most likely achieved before visiting every code. Although elegant,
reservoir sampling leads to large thread divergence, which is likely suboptimal
for the GPU architecture. In any case, the time spent in this perturbation step
is negligible compared to the ICM kernel that we discuss next.

ICM kernel The job of the ICM kernel is to perform local search after the solution
has been perturbed; this corresponds to lines 16-21 in Algorithm 1. By far, this
is the most expensive part of our pipeline, so we discuss the implementation in
more detail.

In short, we have three main tasks: (a) copying the pre-computed unary
terms to shared memory, (b) adding the corresponding pairwise terms to the
unary terms for each possible value of each code, and (c) finding the minimum
of all h possibilities in each code.

Task (a) is a only done once; its implementation is straightforward and makes
bootstrapping the process faster when moving from one code to another. Task
(b) is memory-limited – the pairwise tables are too big to fit in shared memory,
so they have to be read from global memory. Task (c) amounts to a reduce
operation, and is thus compute-limited.

The implementation of (b) is slightly complicated, as it requires us to use
more global memory in order to achieve coalesced access in main memory. Now
it is important that we remember the pairwise tables of size h × h that store

3 https://en.wikipedia.org/wiki/Reservoir_sampling

https://en.wikipedia.org/wiki/Reservoir_sampling
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the pairwise terms
∑m

i

∑m
j 6=i〈Cibi, Cjbj〉. While in theory we only require m ·

(m−1)/2 tables (and they need not be filled completely, as the dot products are
symmetrical), in practice we create m2 −m tables, and fill all their h2 entries.
The purpose of this extra-memory use is to allow coalesced memory access to
the pairwise terms. We keep a matrix of pointers to the tables, such that the
table indexed by [i, j] contains the dot-products between the ith and the jth
code, such that the jth row contains all h possible values of the jth code for
a constant value of the ith code. This means that, when adding the pairwise
terms for all values of the jth code, we can access the precomputed values in
a coalesced manner. However, since ICM optimizes each code sequentially, it is
likely that we will at some point need the transpose of this table, so we store
a copy of the [i, j] table such that [j, i] = [i, j]>. Thanks to this transpose, we
can preserve coalesced access when searching all the h possible values of the ith
code w.r.t. a fixed value for the jth code.

Once all the pairwise terms have been added, we run task (c) as a reduce
findmin operation on the unary + pairwise terms. This is a reduction over the
h values that we computed in task (b). Note, however, that the output is not
the minimum value itself, but its index (a number from 1 to h), so this requires
an extra array of indices to keep track of during reduction. We implemented all
the optimizations available in the CUDA reduce guide4 for this step.

5 Experimental setup

We are interested in MCQ as a means to fast and accurate approximate nearest
neighbour search. The standard protocol in the literature uses three partitions of
the data: (1) train, (2) query, and (3) base. Typically, the train partition is used
to learn the codebooks C; then, one must encode (that is, derive B for) the base
vectors using the previously learned codebooks C. Finally, one uses a smaller
query set to search for approximate nearest neigbours in the base partition.

Performance is measured with recall@N curves. These curves are monoton-
ically increasing, and reflect the empirical probability distribution, computed
over the query set, that the first N computed approximate neighbours contain
the actual nearest neighbour. In information retrieval, recall@1 is considered the
most important point in this curve.

5.1 Datasets

We focus on two large-scale datasets: SIFT1B and SIFT10M. SIFT1B consists
of 128-dimensional SIFT descriptors; the set has 100 million vectors for train, 10
thousand vectors for query, and 1 billion vectors for database. For expedience,
we only used the first million vectors from the training set – this is a shorthand
commonly used in previous work [10,15]. SIFT10M has the same data as SIFT1B,
except that the first 10 million vectors of SIFT1B are used as base. The dataset
is publicly available at http://corpus-texmex.irisa.fr/.

4 https://docs.nvidia.com/cuda/samples/6_Advanced/reduction/doc/

reduction.pdf

http://corpus-texmex.irisa.fr/
https://docs.nvidia.com/cuda/samples/6_Advanced/reduction/doc/reduction.pdf
https://docs.nvidia.com/cuda/samples/6_Advanced/reduction/doc/reduction.pdf
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Fig. 1. Recall@N curves for very large-scale datasets: (left) the SIFT10M, and (right)
SIFT1B.

5.2 Baselines

To compare nearest neighbour search performance, we use 3 baselines: product
quantization (PQ) [9], which assumes that the codebooks are orthogonal, but
initiated research in this area; optimized product quantization (OPQ) [15], which
still assumes orthogonality, but also optimizes the subspace allocation via a
rotation matrix R ∈ SO(d), which can be solved for directly solving a Procrustes
problem. Finally, we compare against composite quantization [10], a method
that enforces the products between the codebooks (ie, our pairwise terms), to
be constant, and uses constrained optimization to find the codebooks. In CQ,
codes are found using ICM, similar to our method. To reproduce PQ and OPQ
we use the publicly available implementation of Norouzi and Fleet.5 For CQ, we
reproduce the values reported in [10]. We refer to our method as SLSQ-x, where
x represents the number of ILS iterations used during database encoding. The
number of ICM iterations (J in Algorithm 1, was set to 4).

6 Results

We report our results in recall@N, reproduced from our previous work [7] in Fig-
ure 1, with detailed result on Table 1. Our method, when using 16 ILS iterations
outperforms all the baselines, and when using 32 iterations further widens the
performance advantage with respect to previous work. These results are shown
here just for completeness, but are not the main focus of our work – when we set
out to port our algoritm to the GPU, we already knew that it performed very
well. Next, we report the speedups of our GPU implementation.

6.1 Speedups

For this particular report, the most important part for us to report is the speedup
observed by our GPU implementation. We report those results on Table 2.

5 https://github.com/norouzi/ckmeans
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SIFT10M – 64 bits SIFT10M – 128 bits

R@1 R@10 R@100 R@1 R@2 R@5

PQ 15.79 50.86 86.57 39.31 54.74 74.89
OPQ 17.49 54.92 89.41 40.80 56.73 77.15
CQ [10] 21 63 93 47 64 84
LSQ-16 22.51 64.62 94.67 49.26 66.75 85.36
LSQ-32 22.94 65.20 94.85 49.50 67.31 86.33

SIFT1B – 64 bits SIFT1B – 128 bits

R@1 R@10 R@100 R@1 R@2 R@5

PQ 06.34 24.41 56.92 26.38 38.57 56.45
OPQ 07.02 27.34 61.89 28.43 40.80 59.53
CQ [10] 09 33 70 34 48 68
LSQ-16 09.73 35.82 73.84 35.32 50.84 70.66
LSQ-32 10.18 36.96 75.31 36.35 51.99 72.13

Table 1. Detailed recall@N values for our method on large-scale datasets: SIFT10M
and SIFT1B.

Method Sequential Batched

codebooks (m) 7 15 7 15

LSQ-16 (ms.) 1.52 7.02 0.53 2.01
LSQ-32 (ms.) 3.01 13.93 1.05 4.03

Method GPU (batched)

codebooks (m) 7 15

LSQ-16 (µs) 17.9 67.2
LSQ-32 (µs) 35.7 134.3

Method Exhaustive NN

codebooks (m) 8 16

PQ (µs) 42.6 77.9
OPQ (µs) 49.2 90.3

Table 2. Time spent per vector during encoding in our approach. “Sequential” refers
to an LSQ implementation where ICM encodes each point sequentially (i.e., does not
take advantage of the shared pairwise terms). “Batched” is our LSQ implementation,
which performs conditioning of shared pairwise terms among several data points.

Focusing on the LSQ-32 results when using 15 codebooks, we see that our
sequential implementation in Julia took almost 14 ms. per vector, our batched
implementation reduced that time to roughly 4 ms. These times were measured
on an Intel i7-3930K CPU, which runs at 3.2 GHz and has 12 MB of cache.
The batched implementation was ported to a Titan X GTX GPU, and we ob-
served a reduction in time to 134.3 µs, which results in a speedup of 30×. This
means that encoding the SIFT1B base dataset can be done in slightly above 37
hours, instead of the over 45 days that it would take with our single-threaded
CPU implementation. Moreover, this GPU implementation has a running time
comparable to that of PQ and OPQ in the CPU.

7 Conclusions and future work

We have demonstrated a GPU implementation of a recent SLS-based algorithm
for encoding in multi-codebook quantization. The implementation takes ad-
vantage of the large-scale parallelism of modern GPUs by being throughput-
oriented; it increases the load per thread during perturbation by making use
of reservoir sampling, and ensures coalesced access to global memory by using
multiple copies of the pairwise tables. We have shown that, in a typical scenario,
our GPU implementation achieves a 30× speedup over a single-threaded CPU
implementation. This has allowed us to tackle a dataset with 1 billion points in
slightly over a day and a half of computation, instead of the month and half that
it would take to do the same task with a single CPU.

A shortcoming of our comparison is that our CPU implementation is probably
far from optimal. Ideally, we would like our CPU implementation to be based in
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C or C++, and even more ideally to be parallelized using pthreads. We dread
the idea of doing the latter, and in any case we believe that the effort/speedup
ratio will still highly favour the GPU implementation. On the other hand, we
do not see any obvious ways of speeding up our current GPU implementation.

Future work may include further exploring the design space of stochastic
local search algorithms for this problem, or improving the design of our CUDA
program to obtain better peformance from the GPU.
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8. Hoos, H.H., Stützle, T.: Stochastic local search: Foundations & applications. El-
sevier (2004)

9. Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor
search. TPAMI 33(1) (2011)

10. Zhang, T., Du, C., Wang, J.: Composite quantization for approximate nearest
neighbor search. In: ICML. (2014)

11. Tung, F., Little, J.J.: Collageparsing: Nonparametric scene parsing by adaptive
overlapping windows. In: Computer Vision–ECCV 2014. Springer (2014) 511–525
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Appendix

1 // Initialize each code to a random value between 1 and h.
2 for i := 1, 2, . . . ,m do
3 bi ∼ U{1, h} ;
4 end
5 // Save the current solution
6 s := [bi,b2, . . . ,bm]
7 // Loop over ILS iterations.
8 for i := 1, 2, . . . , I do
9 // Perturb k codes.

10 for j := 1, 2, . . . , k do
11 idx ∼ U{1,m} // Sample a code to perturb (without replacement)
12 bidx ∼ U{1, h} // Perturb the code to a random value

13 end
14 // Run iterated conditional modes
15 // Loop over the number of ICM iterations
16 for j := 1, 2, . . . , J do
17 // Update each code, keeping the rest fixed
18 for k := 1, 2, . . . ,m do
19 bk := arg minbk

−2〈x, Ckbk〉+ ‖Ckbk‖22 +
∑m

i 6=k〈Ckbk, Cibi〉
20 end

21 end
22 // Compute the cost of the newly-found solution
23 s′ := [bi,b2, . . . ,bm]
24 // If the new solution is better, keep it
25 if cost(s′) < cost(s) then
26 s := s′

27 end

28 end
29 return s

Algorithm 1: Our SLS algorithm for encoding in MCQ
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1 needed := k // The number of codes that we still have to perturb
2 left := m // The number of codes that we can still visit
3 for i := 1, 2, . . . ,m do
4 // With probability needed/left, alter the ith code
5 r ∼ U(0, 1);
6 if r < needed/left then
7 bi ∼ U{1, h}
8 needed := needed− 1
9 if needed ≤ 0 then

10 return
11 end

12 end
13 left := left− 1

14 end
Algorithm 2: Our perturbation method using reservoir sampling
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