Bayesian Optimization with an Empirical Hardness Model for Approximate
Nearest Neighbour Search

Julieta Martinez

James J. Little

Nando de Freitas

University of British Columbia
{julm, little, nando}@cs.ubc.ca

Abstract

Nearest Neighbour Search in high-dimensional spaces is
a common problem in Computer Vision. Although no algo-
rithm better than linear search is known, approximate algo-
rithms are commonly used to tackle this problem. The draw-
back of using such algorithms is that their performance de-
pends highly on parameter tuning. While this process can
be automated using standard empirical optimization tech-
niques, tuning is still time-consuming. In this paper, we pro-
pose to use Empirical Hardness Models to reduce the num-
ber of parameter configurations that Bayesian Optimization
has to try, speeding up the optimization process. Evalua-
tion on standard benchmarks of SIFT and GIST descriptors
shows the viability of our approach.

1. Introduction

Finding the Nearest Neighbour of vectors in high-
dimensional spaces is a common problem in Computer
Vision. It is a central and time-consuming part of non-
parametric classification [3, 22, 23], and different indexing
and retrieval techniques [9, 19]. While no algorithm bet-
ter than linear search is known, numerous Approximate al-
gorithms for Nearest Neighbour search (ANN) have been
proposed [18, 24].

It is well known that parameter tuning is crucial for the
performance of many algorithms commonly used in Com-
puter Vision. In fact, it has been noted that richly param-
eterized models can exhibit performance that ranges from
chance to state-of-the-art depending solely on their tuning
[5]. Nearest Neighbour Search is not the exception; as noted
by Muja and Lowe [13], the performance of different ANN
algorithms varies widely depending on the characteristics of
a dataset such as correlation, dimensionality, cluster preva-
lence and size, as well as on the parameters of the algo-
rithms themselves. This makes it hard to find the best al-

This work was supported in part by the Institute for Computing, Infor-
mation and Cognitive Systems (ICICS) at UBC.

gorithm and its optimal parameters for arbitrary datasets.
Moreover, since the performance of an algorithm depends
on both its intrinsic quality and its parameter tuning, it is
not always entirely clear whether new ANN algorithms are
better than classical ones. In this paper, we investigate the
optimization of rather classical algorithms implemented in
FLANN, a pervasive ANN library that has been extensively
used as a benchmark for new ANN methods.

Motivated by the relatively recent success of Bayesian
Optimization as a powerful tool to optimize expensive-to-
evaluate functions [25, 2], in this paper we explore, for the
first time, its applicability to boost the performance of ANN
algorithms. We also propose a novel procedure to speed up
the optimization process: by learning an extended Empiri-
cal Hardness Model (EHM) [1] offline, we obtain a proxy
to the target function, whose evaluation can be bypassed de-
pending on the quality of the EHM. We test the feasibility of
our approach on large datasets of SIFT and GIST descrip-
tors, and show improvements in speedup over linear search
compared to plain Bayesian Optimization and Grid Search
— the current method implemented by FLANN.

The rest of this paper is organized as follows: in Sec-
tion 2 we briefly review FLANN, Bayesian Optimization
and Empirical Hardness Models. In Section 3 we formally
postulate the problem and in Section 4 we expose the pro-
posed solution. In Section 5 we describe our experimental
setup, and in Section 6 we analyze the experimental results.
Finally, we conclude and outline future work in Section 7.

2. Background and Related Work

In 2009 Muja and Lowe [13] published FLANN, a C++
library intended to speed up the matching of nearest neigh-
bours in high-dimensional vector spaces with a certain
trade-off in precision. FLANN incorporates two algorithms
for search: a randomized kd-tree as described in [18] and
a hierarchical k-means clustering novel to the FLANN im-
plementation. The authors found that the performance of
each algorithm varies widely depending on properties of the
dataset such as dimensionality, correlations, cluster preva-

lence and size, as well as the desired precision. Since choos-
ing and configuring the algorithm that will work best for a
given dataset can be hard for an inexperienced user, they
also offered a functionality to do this automatically. Finding
the best configuration of each algorithm is posed as an opti-
mization problem in parameter space, which can be solved
via standard optimization techniques.

FLANN was released as open source and since then
has become widely popular. It is currently integrated with
the Computer Vision framework OpenCV and with the
Robotics Operating System (ROS) [17], and benefits of
an active community on GitHub.! FLANN has also been
widely used as a baseline to demonstrate the effectiveness
of new ANN algorithms [9, 24], and it is often outper-
formed only by a small margin. In many comparisons, since
FLANN is assumed to automatically choose the best of a
randomized kd-tree or a hierarchical k-means index, it is
considered to be at least as good as the best of both algo-
rithms.

Despite being remarkably popular, the library performs
only Grid Search to pick the best algorithm and its corre-
sponding parameters. We believe that this has hampered
the performance of the library in previous benchmarks, and
in this paper intend to bring it to its full potential. More-
over, we want this performance to be available to the users
at a minimum computational cost.

Finally, even though FLANN aims to be agnostic to the
underlying ANN algorithm, and is built to accommodate
new implementations, no additional ANN methods have
been added to the library since it was published. It is likely
that the underlying optimization method is partly to blame,
as Grid Search would suffer from a combinatorial explosion
if faced with more options. We also expect this work will
also shed some light on what the most suitable optimization
technique for a larger scale FLANN would be.

2.1. Automatic Algorithm Configuration

Automatic Algorithm Configuration deals with the prob-
lem of finding good algorithm parameters for different prob-
lems. It is often posed as a special case of black-box opti-
mization: if we let f : X — R be a black-box function
(i.e., a function with no closed-form expression or available
derivatives), the task at hand is to automatically solve the
global optimization problem

x* = argmin f(x). (1)

xeX
In the context of Algorithm Configuration, x € R? is
a particular configuration of d parameters drawn from the
configuration space, X, and f(x) is the performance of the
algorithm as defined by a desired metric. In the case of

Uhttps://github.com/mariusmuja/flann

instance-specific algorithm configuration, the metric is usu-
ally defined as the performance of the algorithm on a par-
ticular problem.

In Computer Vision the most common optimization
method is Grid Search, i.e., different uniformly spaced val-
ues of x € X are evaluated, and a finer grid is evaluated in
areas that seem promising. This is, in fact, the method that
FLANN currently implements for parameter tuning. While
Grid Search has the advantages of being intuitive, easy to
implement and embarrassingly parallelizable, it inevitably
suffers from the curse of dimensionality, and has a poor
performance for problems whose intrinsic dimensionality
is low, i.e., when only a few parameters matter (see figure 1
in [1]).

While in this work we explore our approach in the con-
text of ANN algorithms, our method is applicable to general
optimization problems.

2.2. Bayesian Optimization for Parameter Tuning

Here we cover Bayesian Optimization with Gaussian
Processes very briefly, and direct the unfamiliar reader to
more tutorial treatments of the subject [4, 14, 16].

Bayesian Optimization is a powerful technique to opti-
mize expensive-to-evaluate functions. Despite being a rela-
tively new technology, it has demonstrated impressive per-
formance on parameter optimization in a variety of tasks
[7, 20, 25, 2]. Bayesian Optimization has two main ingre-
dients: first, a performance model of the algorithm whose
value is known at certain points, and second, an acquisition
function that directs the optimization as a trade-off between
exploration and exploitation.

Performance model. As a performance model we use
Gaussian Processes (GPs). GPs are a popular method to per-
form non-linear regression. For every entry in the parameter
space, a Gaussian distribution estimating the mean and the
confidence (i.e. the variance) of the value of the function at
a given point is computed. A GP can be completely speci-
fied by its mean function m and covariance function k

f(X) ~ GP(m(X)’ kJ(X7 X/))' 2

We assume the mean to be the zero function, m(x) =
0, which simplifies notation. We use the squared Gaussian
kernel as our covariance function k:

Y12
k(x,x') = o?exp (—|X2;|> , 3)

where ¢ controls the width of the kernel and o controls the
amount of modelled noise. This kernel incorporates the as-
sumption of smoothness by requiring entries that are close
together in parameter space to have similar values, while
relaxing the constraint for entries that are farther apart.

For regression, given a series of previous observations
{xX1:t,f1.¢}, we evaluate a new point x¢11. If fry1 =
f(x¢+1), by definition f;.¢ and f;1 1 are jointly Gaussian:

f1:(‘, K k
|:ft+1:| ~N (0’ [kT k(Xt+1,Xt+1)}) @

k—r = [k(Xt+1, Xl),

where

cey k(le,xt)] s (5)

and K is the Gram matrix defined by k on X1, X2, ..., Xt.
The predictive distribution is

P(for1lfie, X1:6401) = N (Fera [p(Xet1), 0% (Xe41)),

(6)

where
p(xer1) = kK My, @)
02 (xp41) = k(Xe11,Xe11) — kKK, (8)

Acquisition function. The choice of the next sampling
point, X¢1, is defined as the maximum of the acquisition
function. The job of the acquisition function is to guide the
exploration towards the minimum in as few steps as possi-
ble. To do so, it balances the trade-off between exploiting
points where the objective is likely to be high (i.e. the GP
mean is high) and exploring others where the uncertainty
(i.e. the GP variance) is high. In our experiments we use
the GP-Upper Confidence Bound (GP-UCB) [21] as our ac-
quisition function

GP-UCB(x) = u(x) + /r1io(x),)

where /07 controls the importance of the variance (explo-
ration) against the mean (exploitation).

Bayesian Optimization in conjunction with Gaussian
Processes has recently gained popularity as an auto-tuning
tool for Machine Learning algorithms but, to the best of our
knowledge, remains unexplored in the context of ANN al-
gorithm configuration. Evaluating the performance of an
ANN algorithm is an expensive operation, taking from sev-
eral seconds to half an hour depending on the dataset size
and algorithm parameters. Therefore, it is critical that we
find the right parameters in as few evaluations as possible.
This is the reason why we advocate the use of Bayesian Op-
timization instead of simpler optimization techniques.

2.3. Empirical Hardness Models for Performance
Prediction

First proposed by Leyton-Brown et al. [11], Empirical
Hardness Models (EHMs) are a tool that predict the perfor-
mance of an algorithm on a particular problem.

Formally, given a set of particular problem instances,
p; € P, and an algorithm, a € A, the objective of per-
formance prediction is to build a model that predicts the
performance of a when run on an arbitrary p € P. EHMs
frame performance prediction as a machine learning prob-
lem, by characterizing each p; with a set of features, ¢, =
[Cp15Cp2s oy Cpn] € R™, where c,; encode expert knowl-
edge. By treating the performance of a on p as an observa-
tion, y € R, the aim is to learn a function, ¢ : R™ — R,
that allows to predict the performance of algorithm a on any
problem instance p € P.

EHMs are modelling algorithm performance. Note that
although the name of EHMs suggests that they are mod-
elling how hard a particular problem is, in practice this
translates to modelling how hard a particular problem is for
a particular algorithm. The rationale is that a problem that
might be hard to solve for one algorithm might be easy to
solve for another, and vice versa.

Extending EHMs to account for algorithm parame-
ters. EHMs work pretty well when the algorithms whose
performance is predicted are deterministic and parameter-
free. However, this is hardly the case in practice. A
workaround to this limitation was proposed in [0], where
EHMs were extended to take parameter configurations as

input too. In our notation, we extend c, to c,, =
[Cp1sCp2y vy Coms Tals Ta2y - - Tam] € R™™ where
Tal, Ta2, - - -5 Tam are tunable algorithm parameters. Natu-

rally, the function that we aim to learn is now ¢ : R**™ —
R. A recent evaluation of Machine Learning models for per-
formance prediction has shown both Random Forests and
GPs to be the best options [8]. Due to the ease of imple-
mentation, we chose GPs to build our EHM.

3. Problem Formulation

ANN algorithms typically offer a trade-off between
speedup and build time or memory constraints. Muja and
Lowe [13] proposed to define the cost of a particular algo-
rithm conufiguration ¢ as

AL L - (10)
(s 4+ wpb)opt

where s is the search cost, the time that it takes to find the
nearest neighbours of a randomly sampled set of vectors.
As more precision is required by the user, this is expected
to increase. The build time cost, b, is the time that it takes
to build the index. As the size of the dataset increases, this

is expected to increase as well.
The memory cost, m = my/myg, is the fraction of the
memory used by the index relative to the memory used to
store the dataset. The weights, w; and w,,, are specified

by the user. The build time weight, wy, controls the ratio of
importance of the build time with respect to the search time.
The memory weight, w,,,, determines the importance given
to the memory used by the index. Finally, (s + wpb)opr =
min; (s + wyb), is the minimum search plus build time cost
found during (Grid Search) optimization.

3.1. Optimizing Speed for a Fixed Recall

The optimization problem consists of finding the algo-
rithm and its corresponding parameter configuration that
achieves a minimum J;. For a given set of vectors ®, we
randomly sample a subset 8 and optimize for the speed of
a fixed recall@1, i.e. we build an index for ® and for each
vector v € 6 we search for its nearest neighbor in ®, until
at least a fraction p of them are correct: our goal is to per-
form this task as fast as possible. This is the original metric
that FLANN aims to optimize, although in [13] recall@1 is
referred to as precision.

4. Solution Methodology

Our proposed solution consists of two parts. First, of-
fline, we build an EHM for each of the two ANN algo-
rithms that FLANN implements. Second, online, we use
this model to get approximate evaluations of parameter con-
figurations, and use the evaluations to speed up the opti-
mization on particular instances.

4.1. Bayesian Optimization as Performance Predic-
tion

It is important to remember that Bayesian Optimization
builds a model of the current function it is trying to opti-
mize. In our case, the model is given by the Gaussian Pro-
cess at time ¢, which is updated in every iteration by the
observation at time ¢ + 1. It should be straighforward to
see, then, that Bayesian Optimization is also in the business
of performance prediction. In fact, if we could use equa-
tion (6) to correctly predict the value of any arbitrary f; 1,
then we would be effectively predicting the performance of
any algorithm configuration. If we think of the algorithm
selection as a categorical parameter, then obtaining an ac-
curate GP model is equivalent to both a) converging the GP
optimization, and b) accurately predicting the performance
of different algorithms (and different parameter configura-
tions) on a particular problem.

4.2. Empirical Hardness Models as Parameter Tun-
ing

It is also important to note that Empirical Hardness Mod-

els can be though of as a method for parameter tuning. In

fact, if we let the model include algorithm parameters, then

EHMs are effectively predicting the performance of differ-

ent algorithms and different parameter configurations on a

particular problem. Particularly, finding the best algorithm
configuration amounts to finding the argmin of the EHM.

4.3. Should we trust the model?

Now that we have seen that both Bayesian Optimization
and EHMs can be seen as a tool to tackle the same problem,
it seems natural to ask: how can they help each other? Sup-
pose that we have a series of EHMs learned offline: should
we trust this model during Bayesian Optimization? On one
hand, if the answer is “yes” then the natural way to proceed
is to not query the original function at all. According to this
logic, if the EHMs have all the answers, then the configu-
ration that minimizes the value of the EHM should be the
optimal configuration that Bayesian Optimization is looking
for. On the other hand, if the answer is “no”, then perhaps
we should throw the EHM away, since it can only mislead
and hamper the optimization process.

The former two extreme cases rarely happen in prac-
tice. In reality, the EHMs that we learn will not predict
the performance of different algorithms perfectly on every
instance, but will rather be an approximation. Moreover,
the quality of such approximation will most likely be un-
known during runtime, and it will possibly be accurate for
some configurations, and inaccurate for others. Therefore,
it seems more natural to assess the quality of the model on-
line, and find out, based on empirical evidence, whether the
model learnt offline is appropriate to tune the instance at
hand. It is in this spirit that we propose algorithm 1.

Algorithm 1 Warm-starting BO

Require: ~, the a priori confidence. (3, the EHM confi-
dence tolerance. «, the confidence change pace.

1: for each Bayesian Optimization iteration i do

2 p ~ uniformly at random in [0, 1]

3 if p > 7 then

4 m < EHM value

5: q < function value

6

7

8

9

if |m — g| > [then
7 < min (0.001, v * @)
else
7 < max (0.999, v * (1 + «))

10: else
11: q < model value
12: Continue the optimization iteration normally

Intuitively, we are testing the quality of the model with
probability inverse to the current confidence. In line 6 we
probe the difference between what the model predicts and
what the value of the actual function is. The rest of the algo-
rithm takes care of keeping a belief of the confidence in the
EHM. The proposed algorithm is general enough to con-
sider the two extreme cases of model confidence outlined
before. Absolute confidence in the model can be expressed

with the parameters v = 1,5 = 1 and « being irrelevant,
while a total lack of confidence in the model will be given
by parameter values v = 0, 8 = 0, and « being irrelevant as
well. Values in between account for different initial degrees
of confidence in the EHM.

Search initialization. Note that algorithm 1 does not dic-
tate how the first query to the function should be made. In
practice, this is usually user-specified or set at random. We
make the first query at the middle value of the respective
configuration spaces.

Hyperparameter optimization. In Bayesian Optimiza-
tion, it is often hard to estimate the true width of the Gaus-
sian kernel /. While /¢ lets the user input their knowledge
about the problem, in the context of black-box optimiza-
tion the user often knows little about the problem in the first
place. The width of the kernel is often set by maximiz-
ing marginal likelihood, or estimated using Grid Search.
We follow the approach of [25], exploring the bounds,
f, = 0.01 and £, = 50, every 10 iterations.

Parameter values. In the Gaussian kernel we set 0 =
0.01, and in GP-UCB ,/v7, = 10. For algorithm 1, we
use gamma = 0.5, 8 = 0.1 and o = 0.1.

5. Experimental Setup

We evaluate our approach empirically. We compare
Grid Search (the current method implemented in FLANN),
against plain GP-UCB (In Figures 1 and 2 “Bayesian Opti-
mization””) and GP-UCB using the EHM trained in batch
(denoted “W-BO”, as for “warm-started” Bayesian Opti-
mization). For completeness, we also compare against Ran-
dom Search and SMAC [7], a competing optimization ap-
proach. We set wy and w,,, to zero in our objective func-
tion (eq. 10), and therefore proceed to optimize for the best
speedup.

5.1. Parameter Spaces

As implemented in FLANN, a kd-tree index can be pa-
rameterized by the number of dimensions with largest vari-
ance over which a tree split is considered, n, and the number
of trees it contains, ¢, while a hierarchical k-means index is
parameterized by the clustering method, ¢, a branching fac-
tor, b, and the number of clustering iterations it performs,
1. We define 2 parameter spaces to perform optimization,
summarized in Table 1. Both n and c are fixed on values
that were noted to work well in [13]. While with Bayesian
Optimization we can explore arbitrary integers (full config-
uration), the current optimization is constrained to a set of
predefined values outlined in the partial configuration.

Parameter | Partial Conf. | Full Conf.
n | {5} {5}
kd-tree === 576,377 (1,2,...,64]
¢ | {random} {random}
k-means {16, 32, 64, 128,
b 256} {2,3,...,512}
i | {1,5,10, 15} {1,2,...,32}

Table 1. Different parameter spaces for FLANN. Grid Search, the
current method implemented by the library, explores all the com-
binations of the partial configuration, while in Bayesian Optimiza-
tion we can explore the full configuration space.

In our experiments, we let Bayesian Optimization run for
100 iterations, while Grid search is limited to 5+5 x4 = 25
trials (which is what currently FLANN does). Nonetheless,
the final comparison is made at 25 iterations to keep it fair.

Since there is randomness in both the ANN search and
the optimization algorithms, we made 5 runs of each opti-
mization method and report the mean and, for visual clarity,
a half standard deviation in our results.

5.2. Data

We evaluate the performance of the different optimiza-
tion techniques on two different datasets. The first one is
SIFT1M, introduced in [9]. It consists of one million 128-
dimensional SIFT [12] descriptors. To observe the effects
of dataset size, we randomly sampled groups of 10,000, and
100,000 descriptors from the original dataset. For the sec-
ond dataset, we took the 60,000 images from CIFAR-10
[10] and computed 384-dimensional GIST [15] descriptors
from them. Later, we computed PCA and kept the 64 prin-
cipal components, which is a common practice that reduces
complexity while maintaining a competitive performance.
Similarly, we randomly sampled a smaller dataset of 6,000
vectors to see the effect of dataset size increase. In each
dataset, we took a sample 6 of 1,000 vectors and optimized
for speed as described in Section 3.1. We show results for a
fixed recall@1 of 0.6 and 0.9.

5.3. Dataset Features

To train the batch EHMs, it is not only necessary to de-
fine the parameter spaces, but also the problem features that
will be used in the model. Instead of coming up with fea-
tures ourselves, we note that important features have been
pointed out in the past. In fact the original FLANN paper
[13] suggests that dimensionality, size, clustering character-
istics and correlations play an important role in the perfor-
mance of different algorithms. Next, we explain how we
compute these features.

Dimensionality and size. This is straightforward. It cor-
responds to the number of datapoints and their dimension-

Desired recall

0.6
%
80
=
S
] = ——
80| | —
©
s g
~ £ e LU LLLLL
O =60
— ¢
° sy [Random
350 -+ SMAC
;’-’. Bayesian Opt.
40 W-BO
X X Grid
305 20 20 60 80 100

Iterations

Dataset size

w
o
=)

300

250 X

© Random
==+ SMAC
Bayesian Opt.
W-BO

X X Grid

40 60
Iterations

100k
Speedup over linear search

N
=3
=)

0 20 80 100

0.9

18

------ Random

==+ SMAC
Bayesian Opt.
W-BO

X X Grid

40 60
Iterations

Speedup over linear search
=
o

=
N

-
N

S
o

20

80 100

80

+ SMAC
45 +=+ Bayesian Opt.
W-BO

X X Grid

Speedup over linear search

0 20 40 60 80 100
Iterations

Figure 1. Performance on the 100k SIFT dataset under different optimizers.

ality, which are assumed to be known in advance.

Correlation. We use the simple correlation coefficient to
measure the clustering between dimensions ¢ and j, given
by Pij = Ci;/+/Cii x Cj;, where C stands for the covari-
ance matrix. This returns a value between -1 and 1 for each
dimension pair. We noticed that taking the mean of all these
values results in numbers very close to zero. Therefore, we
take all the positive values and keep the mean, and do the
same for negative values, resulting in 2 features to account
for clustering.

Clustering characteristics. Clustering is accounted for
by measuring the k-means clustering quantization distor-
tion. This is defined as >, ||v; — ¢;||?, where v; is each
vector, and ¢; is the k-means cluster centroid assigned to
such vector. We use [n'/2] as the number of cluster cen-
ters, and perform 5 k-means iterations on the data.

Desired recall (p). This value is passed by the user. While
it is not a characteristic of the dataset or of the algorithm, it
turns out to affect the performance, and must therefore be

passed to the EHM as well. We test for values of 0.6 and
0.9, asin [13].

5.4. Building the EHM

To build the EHMs, we took disjoint random subsam-
ples from the SIFTIM dataset, and used PCA-projected
384-dimensional GIST descriptors from CIFAR-100 [10],
a dataset similar in spirit to CIFAR-10. We tried 500 ran-
dom configurations on each dataset, resulting in 16 x 500 =
8,000 configurations to train. We then fit a Gaussian Pro-
cess to this data, and set its hyperparameters via 10-fold
cross-validation.

6. Experimental Results

Results for the SIFT1M and CIFAR-10 datasets are sum-
marized in Figures | and 2.

The performance of plain Bayesian Optimization is al-
ready quite good, achieving a 16% improvement in speedup
over linear search when compared to Grid Search for the
same number of iterations, which is the current performance
of FLANN. Using the Empirical Hardness Model (W-BO)
does improve Bayesian Optimization in 3 of the 4 cases

Desired recall

0.6 0.9
35 16
14
5 =
5 1
a a
© s 10
] Q
= £
X = ~ 8
©o 2 $
o wu Random o el | Random
g ==+ SMAC 3 ==+ SMAC
;.’ Bayesian Opt. a 4l <+ Bayesian Opt.
10 W-BO 2; W-BO
@ XX Grid X X Grid
) % 20 40 60 80 100 % 20 40 60 80 100
- Iterations Iterations
Q
(%]
8
p 120 35
o 110
30
5 100 §
o ©
[Q
» 90 v 25
o ©
[[
~ £ 80 <
= = 20
R 3
a © Random s | A | e
2 ==+ SMAC I g
;’.) Bayesian Opt. ;.’ Bayesian Opt.
W-BO 10 W-BO
XX Grid X X Grid
80 100 &) 20 20 60 80 100

40 60
Iterations

Iterations

Figure 2. Performance on the CIFAR-10 dataset under different optimizers.

for the SIFT1M dataset, and in 2 cases for the CIFAR-10
dataset. Overall, W-BO is 18% better than linear search for
the same number of iterations.

We hypothesize that the EHM hampers Bayesian Opti-
mization in CIFAR-10 because the classes used to train the
on 64-dimensional data were drawn from a different dataset.
If in practice we want to ship FLANN with a built-in per-
formance model, this is a major drawback. It is, however,
promising that the optimization is improved in 2 out of 4
cases, particularly for size 6k and p = 0.9, where plain
Bayesian Optimization does not reach W-BO even after 100
iterations.

7. Conclusions and Future Work

We have demonstrated that FLANN can benefit from a
better optimization technique than its current Grid Search.
We have also introduced a new algorithm that incorporates
Empirical Hardness Models into the Bayesian Optimization
loop, and demonstrated that this can be used to find better
configurations with less queries to the objective function.

Since FLANN has been compared in previous bench-
marks using only Grid Search for parameter tuning, we

think that a more thorough evaluation — one that takes into
account parameter tuning — should be performed to settle
the score between FLANN and other ANN approaches. Fi-
nally, we also want to make improvements to our warm-
starting algorithm to account for model confidence; after
all, it does not make much sense to lose confidence in a
model that was not confident of its predictions in the first
place. These are all interesting areas for future work.

Acknowledgements

The authors would like to thank Sancho McCann and Mar-
ius Muja for helpful discussions and valuable suggestions;
and Matthew Hoffman for providing his implementation of
Bayesian Optimization with Gaussian Processes.

References

[1] J. Bergstra and Y. Bengio. Random search for hyper-
parameter optimization. The Journal of Machine
Learning Research, 13:281-305, 2012. 2

[2] J. Bergstra, D. Yamins, and D. Cox. Making a sci-
ence of model search: Hyperparameter optimization

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

(12]

[13]

(14]

in hundreds of dimensions for vision architectures. In
Proceedings of the 30th International Conference on
Machine Learning (ICML-13), pages 115-123, 2013.
1,2

O. Boiman, E. Shechtman, and M. Irani. In defense of
nearest-neighbor based image classification. In Com-
puter Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on, pages 1-8. IEEE, 2008.
1

E. Brochu, V. M. Cora, and N. de Freitas. A tuto-
rial on bayesian optimization of expensive cost func-
tions, with application to active user modeling and
hierarchical reinforcement learning. arXiv preprint
arXiv:1012.2599, 2010. 2

D. Cox and N. Pinto. Beyond simple features: A large-
scale feature search approach to unconstrained face
recognition. In Automatic Face & Gesture Recogni-
tion and Workshops (FG 2011), 2011 IEEE Interna-
tional Conference on, pages 8—15. IEEE, 2011. 1

F. Hutter, Y. Hamadi, H. H. Hoos, and K. Leyton-
Brown. Performance prediction and automated tuning
of randomized and parametric algorithms. In Prin-
ciples and Practice of Constraint Programming-CP
2006, pages 213-228. Springer, 2006. 3

F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequen-
tial model-based optimization for general algorithm
configuration. In Proc. of LION-5, page 507523, 2011.
2,5

F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown.
Algorithm runtime prediction: Methods & evaluation.
Artificial Intelligence, 2013. 3

H. Jégou, M. Douze, and C. Schmid. Product Quan-
tization for Nearest Neighbor Search. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence,
33(1):117-128, Jan. 2011. QUAERO. 1, 2,5

A. Krizhevsky. Learning multiple layers of features
from tiny images. Technical Report, Department of
Computer Science, University of Toronto, 2009. 5, 6

K. Leyton-Brown, E. Nudelman, and Y. Shoham.
Learning the empirical hardness of optimization prob-
lems: The case of combinatorial auctions. In Prin-

ciples and Practice of Constraint Programming-CP
2002, pages 556-572. Springer, 2002. 1, 3

D. G. Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer
vision, 60(2):91-110, 2004. 5

M. Muja and D. G. Lowe. Fast approximate nearest
neighbors with automatic algorithm configuration. In
VISAPP (1), pages 331-340, 2009. 1, 3,4, 5,6

K. P. Murphy. Machine learning: a probabilistic per-
spective. The MIT Press, 2012. 2

[15]

[16]

[23]

A. Oliva and A. Torralba. Building the gist of a
scene: The role of global image features in recogni-
tion. Progress in brain research, 155:23-36, 2006. 5

M. A. Osborne, R. Garnett, and S. J. Roberts. Gaus-
sian processes for global optimization. In 3rd inter-
national conference on learning and intelligent opti-
mization (LION3), pages 1-15, 2009. 2

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng. ROS: an open-
source robot operating system. In /CRA workshop on
open source software, volume 3, 2009. 2

C. Silpa-Anan and R. Hartley. Optimised kd-trees for
fast image descriptor matching. In Computer Vision
and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pages 1-8. IEEE, 2008. 1

J. Sivic and A. Zisserman. Video google: A text re-
trieval approach to object matching in videos. In Com-
puter Vision, 2003. Proceedings. Ninth IEEE Interna-
tional Conference on, pages 1470-1477. IEEE, 2003.
1

J. Snoek, H. Larochelle, and R. P. Adams. Practical
bayesian optimization of machine learning algorithms.
In Neural Information Processing Systems, 2012. 2

N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger.
Gaussian process optimization in the bandit setting:
No regret and experimental design. arXiv preprint
arXiv:0912.3995, 2009. 3

A. Torralba, R. Fergus, and W. T. Freeman. 80
million tiny images: A large data set for nonpara-
metric object and scene recognition. Pattern Analy-

sis and Machine Intelligence, IEEE Transactions on,
30(11):1958-1970, 2008. 1

A. Torralba, R. Fergus, and Y. Weiss. Small codes and
large image databases for recognition. In Computer
Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, pages 1-8. IEEE, 2008. 1

J. Wang, N. Wang, Y. Jia, J. Li, G. Zeng, H. Zha, and
X. Hua. Trinary-projection trees for approximate near-
est neighbor search. 2013. 1,2

Z. Wang, M. Zoghi, F. Hutter, D. Matheson, and
N. De Freitas. Bayesian optimization in high di-
mensions via random embeddings. In Proceedings
of the Twenty-Third international joint conference on
Artificial Intelligence, pages 1778—-1784. AAAI Press,
2013. 1,2,5

