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Abstract

We explore a novel paradigm in learning binary codes
for large-scale image retrieval applications. Instead of
learning a single globally optimal quantization model as
in previous approaches, we encode the database points in
a data-specific manner using a bank of quantization mod-
els. Each individual database point selects the quantization
model that minimizes its individual quantization error. We
apply the idea of a bank of quantization models to data-
independent and data-driven hashing methods for learn-
ing binary codes, obtaining state-of-the-art performance on
three benchmark datasets.

1. Introduction

The continuing growth of online image and video collec-
tions has motivated many advances in algorithms for large-
scale recognition and retrieval. The goal of large-scale re-
trieval algorithms is to support efficient and accurate query-
ing into the collection under memory and time constraints.
Methods for large-scale retrieval may be divided into two
main groups: hashing methods [3, 4, 6,9, 12, 13, 15, 20, 21,
22, 23] and lookup-based methods [2, 7, 8, 10, 16]. Hashing
methods learn a mapping from high-dimensional feature de-
scriptors to compact binary codes such that the locality rela-
tionships in the original feature space are closely preserved
in the reduced Hamming space. In large-scale applications,
binary codes greatly reduce both memory requirements and
query time. Lookup-based methods adaptively quantize the
feature space and create a lookup table from cluster cen-
troids to full-dimensional feature descriptors.

Which group of methods to choose is application depen-
dent. State-of-the-art lookup-based methods tend to achieve
higher recall at the cost of longer query times [6]. Hash-
ing methods can take advantage of hardware-accelerated
Hamming distance computation: the Hamming distance be-
tween two binary codes can be computed by performing
an XOR and counting the ones, which is a fast operation
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Figure 1. Toy example illustrating an online query with a bank
of random rotations. Distances are computed adaptively, using
each database point’s selected rotation. Note that we perform K
rotations but only the usual n» Hamming distance computations
(where n is the number of database points).
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supported directly in modern hardware. Techniques for fast
exact search in Hamming space [17] can further accelerate
retrieval. Finally, hashing methods produce binary codes
that can be used directly in downstream clustering or clas-
sification modules, which is not possible with lookup ta-
ble methods [5]. In this paper, we propose a novel hash-
ing paradigm in learning binary codes for large-scale re-
trieval applications. Previous hashing methods for learn-
ing binary codes optimize for a single global quantization
model. In contrast, we employ a bank of multiple quan-
tization models, and encode the database points in a data-
specific manner. Each individual database point selects the
quantization model that minimizes its individual quantiza-
tion error. In other words, we take quantization error min-
imization to the extreme case and quantize the database in
a data point specific manner. The framework can accom-
modate both data-independent (Section 3.1) and data-driven
(Section 3.2) models. We show that the proposed approach
yields state-of-the-art hashing performance on three stan-
dard retrieval benchmarks (Section 4).



2. Related work

Retrieval performance has been shown to be closely re-
lated to quantization error [2, 4, 6]. Therefore, it is useful
to view retrieval approaches as lossy compression, whose
objective is to reduce the quantization error. For a set of
d-dimensional vectors X = {xj,Xa,...,X,} and a set of
m cluster centers (i.e., codebook) C = {cy,ca,...,cCp} the
objective is to reduce the quantization error by solving

E =min c(x) — x| 1
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where c is a quantizer function that maps x to its nearest
cluster center in the codebook. Without any restrictions,
the above function can be heuristically optimized by the k-
means algorithm, which iteratively optimizes cluster loca-
tions and assignments. Although k-means exhibits better
performance as the number of clusters increases, the algo-
rithm is very hard to scale, as the required computation is
quadratic in the number of clusters. Moreover, for £ bits one
would like to express 2" clusters in order to achieve maxi-
mal compression, which makes the algorithm infeasible for
large values of k.

It has been noticed, however, that the above formulation
can be made tractable under certain restrictions. For exam-
ple, product quantization (PQ) [8] looks for orthogonal sub-
spaces that, taken together, can express a superlinear num-
ber of clusters. However, the method still requires a lookup
table. On the other hand, the iterative quantization (ITQ)
method [4] minimizes the objective

E=min Y _|e(x) —x]?,
¢ xeX (2)

withc € C = {c|c-R={—a,a}?}, RT -R=1.

Since the distance between codewords remains constant,
the resulting codes can be efficiently compared using Ham-
ming distance. Intuitively, ITQ finds a rotation R of the
PCA-projected, zero-centred data that minimizes the quan-
tization error when mapping the data points to the closest
corners of a binary hypercube, which represents 2¢ clus-
ter centers. This rotation is determined iteratively by alter-
nating between updating the assignments given the current
rotation, and updating the rotation to minimize the quan-
tization error given the current assignments. The iterative
optimization is initialized using a random rotation.

3. Proposed approach

Two observations motivate the bank of quantization
models.

1. Most data-driven hashing methods try to solve for the
quantization model that minimizes the global quanti-

zation error (Eq. 1). However, quantization error may
still be high for individual data points.

2. For bit ranges of 32 to 128, several bits can be dis-
carded with minimal effects on quantization perfor-
mance.

The first observation motivates the search for multiple mod-
els to further reduce quantization error. The second obser-
vation leads us to allocate bits from the quantization model
to index the best model per data point.

Formally, our objective function is
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where 7 indicates the index of the quantization model as-
signed to the data point x. Note that we have 2* models,
use k bits to index them and therefore are still able to ex-
press 2% (24=%) = 24 cluster centers in total. However, the
orthogonality constraint imposed by R; does not span all the
dimensions; rather, we have 2 subspaces of d — k dimen-
sions each. This union of orthogonal models can be seen as
a generalization of the orthogonality constraint of ITQ [4].

We now apply the simplest instantiation of our bank
of quantization models idea to create an effective data-
independent hashing method.

3.1. Data-independent hashing: Bank of random
rotations (BRR)

The simplest instantiation of our idea is inspired by the
observation that a random rotation of the cluster centers is a
remarkably strong benchmark in both PQ and ITQ. There-
fore, we propose to instantiate Eq. 3 by generating a collec-
tion of K = 2* random rotations R = {Ry, R, ..., Ri’ }.
We encode the database as follows. We first preprocess
the database points by zero-centering and PCA embedding.
Next, for each individual data point x we find R* € R that
satisfies

R* = argmax||xR)|; 4)
RER
where || - || is the L1 norm (for space reasons we omit a

proof showing that this has the equivalent effect as select-
ing based on individual quantization error). Encoding must
be performed by assigning x to its nearest cluster center.
Due to the orthogonality constraint, this is achieved by sim-
ply thresholding at zero: y = sgn(xR*). Finally, we store
the pair (y, j), where j is the index of R* in the bank of
random rotations R. That is, j identifies the rotation used
to produce the binary code y. Note that we allocate bits



from our budget to index the best quantization model (i.e.
to store j) for each individual data point, and therefore in-
cur no additional memory usage for the database. There is,
however, a small memory overhead for storing the bank.

Next, we explain how online queries work in a bank of
quantization models framework. Given a (zero-centered,
PCA-embedded) query point x,, we compute distances to
the database points adaptively, using each database point’s
selected quantization model (rotation). More specifically,
for each rotation R in the bank, we quantize x, with respect
to the rotation R via y, = sgn(x,R), and compute the
Hamming distance of y, to all database binary points that
selected R as their rotation. Figure 1 illustrates with a toy
example. For greater clarity, we emphasize that for a single
query, we perform K rotations (typical overhead of frac-
tions of a millisecond) and then compute only n Hamming
distances — not Kn distances. The number of Hamming-
space comparisons is unchanged by the bank of rotations.

Despite the simplicity of the bank of random rotations,
we show in the experiments that it provides competitive
retrieval accuracy with state-of-the-art hashing methods,
without requiring any complex optimization or training. In
addition, large-scale applications often involve databases
that grow over time as users continually add images or
video. In the bank of random rotations approach, when
a new point is added to the database it selects a rotation
from the bank independently from all other database points.
In contrast to data-driven hashing methods, no global opti-
mization problem over the database needs to be re-solved.
The proposed bank of random rotations approach therefore
offers a particularly scalable solution in large-scale applica-
tions where the database is expected to grow over time.

A natural question to ask is whether the rotations can be
learned from the data. We next describe a data-driven in-
stantiation of our bank of quantization models idea in which
the rotations are learned.

3.2. Data-driven hashing: Bank of iterative quanti-
zations with hypercube stretch (BITQS)

A natural extension is to replace the bank of random
rotations with a bank of quantization models that are (a)
learned (i.e., data-driven) and (b) different from each other
(i.e. complementary). The intuition is that even if the quan-
tization models are locally optimal, the union of them will
have a better chance at approximating a globally optimal
solution.

ITQ satisifies both requirements: it iteratively adapts to
the distribution of the data, so as to minimize its quantiza-
tion error, and thanks to the use of a random initialization
and subsequent coordinate descent, the rotations learned via
ITQ are locally optimal and different from each other. How-
ever, having only one degree of freedom (R) limits the com-
plementarity of the models. Since we are minimizing quan-

tization error, it makes sense to look for models with more
degrees of freedom, in the hope that they will better com-
plement each other.

It has been recently shown that better retrieval per-
formance can be obtained by exploring the tradeoff be-
tween quantization error and Hamming-to-Euclidean dis-
tance (affinity) error. K-means hashing [6] jointly mini-
mizes both terms by constraining the relative positions of
k-means clusters. On the other hand, orthogonal k-means
(ok-means) [16] maintains the orthogonality constraint of
ITQ, but also adds translation and non-uniform scaling to
the model. While translation does not impact the affinity
error, non-isotropic scaling of the quantization hypercube
does, and the metric between the learned codes becomes
a scaled Hamming distance. In practice, however, we ob-
serve that the non-scaled metric maintains a very compet-
itive performance, therefore being directly comparable to
other Hamming approaches. ok-means also offers other
advantages, such as the possibility to learn the mapping
directly in the feature space, and the inclusion of an out-
of-projection error, which can reduce quantization error by
projecting out large parts of the feature space. In practice,
though, we observe that simply keeping the non-uniform
scaling is responsible for almost all the improvement in re-
trieval performance, and therefore only incorporate that into
our objective.

Formally, our objective function becomes the search for
a rotation and a scaling which satisfy

(R*,S*) = argmin||Y'S — X R|%, ®)
(R,S)

where S € R*¢ is a diagonal matrix whose entries
s1,...,8. contain the scaling per dimension of the quan-
tization hypercube. We also use a random initialization
for R and coordinate descent to optimize Eq. 5, alterna-
tively solving for R (solving a Procrustes problem), S (via
1-dimensional k-means), and the cluster assignments. In
practice, we find that updating S with the mean of the data
is comparable to using k-means, and use that in all our ex-
periments. This results in a two-line modification to ITQ.

Our data-driven extension replaces the random rotations
in the previous section with rotation-scaling pairs found by
solving Eq. 5 with different random initializations. Given
the bank of rotation-scaling pairs, the database encod-
ing and online query processes are analogous to the data-
independent instantiation in the previous section: we en-
code the rotation-scaling pair that minimizes the individual
quantization error for each database point, and at query time
compute distances to the database points adaptively using
each database point’s selected rotation-scaling pair.



4. Experiments

In this section, we evaluate the retrieval performance of
both our data-independent (BRR) and data-driven (BITQS)
instantations of the bank of quantization models framework.
We explore suitable parameters for our approach and com-
pare to state-of-the-art hashing methods on three bench-
marks.

Methodology. Experiments were conducted on three
standard retrieval benchmarks: SIFT1M and GIST1M, both
from [8], and CIFAR-10 from [11]. The SIFT1M dataset
consists of 100,000 128-dimensional SIFT [14] descrip-
tors for training, 1 million descriptors for the database
and 10,000 descriptors for queries. GISTIM consists of
500,000 960-dimensional Gist [18] descriptors for train-
ing, 1 million for the database and 1,000 for queries. The
CIFAR-10 dataset is a 60,000-image, 10-class subset of the
Tiny Images dataset [19]. We computed 384-dimensional
Gist descriptors for each CIFAR-10 image and randomly
split 6,000 descriptors for train, 600 for queries and the
rest for database. We show retrieval performance using
recall@N curves [2, 6, 8, 16], which plot the proportion of
true neighbors retrieved in the first N Hamming neighbors.
We followed the convention of He et al. [6] and considered
the ground truth to be the 10 nearest Euclidean neighbors
of the query. We used public implementations of spectral
hashing, iterative quantization, and k-means hashing.

Recall that, for each database point, we allocate bits from
our budget to store the identifier (index) of the quantization
model selected from the bank. In our comparisons to the
state-of-the-art methods, we adjusted the number of bits in
our binary codes accordingly. For example, for 64-bit codes
and a bank of 256 random rotations, we computed 56-bit
codes since 8 bits are needed to index into the bank.

Choosing the number of models. Our method requires
only one parameter to be set, that of k in Eq. 3. There
is a natural trade-off between the number of quantization
models and the information loss due to quantizing on fewer
bits. We explore this trade-off in Figure 2. We observe that
retrieval performance increases as more models are added,
saturating at around K = 256. Eventually, performance de-
creases when too many bits are allocated for indexing; this
is easier to see when the budget is more constrained (e.g.,
32 bits). We note that using 256 models (i.e., using k = 8
bits for indexing), we obtain good performance across all
datasets and bit budgets, and in what follows, we use this
parameter for all our experiments.

Comparison with the state of the art. We compare the
two instantiations of our bank of quantization models idea
— the data-independent BRR and the data-driven BITQS —
with three state-of-the-art hashing methods: spectral hash-
ing [22], iterative quantization [4], and k-means hashing
[6]. We include also two classical baselines: PCA hashing
and locality sensitive hashing. K-means hashing requires a
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Figure 4. Running times for building an index offline using the L1
norm criterion (Eq. 4) and the squared loss (Eq. 5). Measurements
were obtained on a desktop with a 3.40GHz processor, using a
single core.

product-space decomposition [8] to be tractable. We per-
formed this split into product subspaces following the split
used by He et al. [6] in their experiments: for SIFT de-
scriptors, 2 bits per subspace for 32-bit codes and 4 bits per
subspace for 64-bit and 128-bit codes; and for Gist descrip-
tors, 8 bits per subspace. In these experiments, we ran ITQ
for 50 iterations following Gong and Lazebnik [4], and give
the same number of iterations to our models in BITQS.

Figure 3 shows the retrieval performance of 32-bit,
64-bit, and 128-bit codes on the SIFT1M, GIST1M, and
CIFAR-10 benchmarks. We observed that, despite its
simplicity, the data-independent bank of random rotations
(BRR) outperforms the state of the art on GISTIM and
CIFAR-10. On SIFT1M, at 64 bits and 128 bits the bank of
random rotations is comparable to k-means hashing, despite
not requiring any training or complex sequential optimiza-
tion. The data-driven bank of iterative quantizations with
hypercube stretching (BITQS) outperforms the state of the
art on SIFT1M for 32 bits, 64 bits, and 128 bits.

Memory and time requirements. Memory require-
ments are the usual for hashing approaches (i.e., d bits per
data point). Since we allocate bits from our budget to store
the indexing of each point, we incur no additional memory
usage for the database. There is, however, a linear overhead
on the number of models, as our approaches need to store
K ¢ x crotations. For 256 random rotations and d = 128
bits per data point, this amounts to about 14 MB, which can
be reduced by slightly more than half using the exponential
map of SO(c) [1].

For the data-driven BITQS only, we first have to train
K models, and then evaluate them on each point of the
database offline. We report running times for this step in
Figure 4. The quantization models in BITQS are trained us-
ing iterative optimization approaches, and there is a linear
overhead on the number of models. For K models, each
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Figure 2. Trade-off between the number of models (K = 2%, indicated in the label) and retrieval performance for BRR and BITQS. We
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Figure 3. Comparison with three state-of-the-art hashing methods (SH: spectral hashing, ITQ: iterative quantization, KMH: k-means hash-
ing) and two classical methods (LSH: locality sensitive hashing, PCAH: PCA hashing) on SIFT1M, GIST1M, and CIFAR-10 benchmarks.
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Figure 5. Retrieval performance as a function of per-model iterations in BITQS (using 256 models) on the SIFT1M dataset.

running for m iterations, this amounts to m K iterations in
total. In our experiments we set m = 50 following [4].
Since BITQS shows the best performance in SIFT1M, we
explore different values of m in Figure 5. We observe that
competitive performance can be obtained with around 20 it-
erations, reducing training times by slightly more than half.

When performing a query online, we incur a small over-
head from applying K rotations, prior to the usual n Ham-
ming distance computations. Typically this overhead is
on the order of fractions of a millisecond (~0.05 ms for
K = 256), and can be easily parallelized.

5. Conclusion

We have presented a novel paradigm in learning binary
codes for large-scale retrieval applications, in which we
quantize the database in a data point specific manner. This
idea is implemented by indexing into a bank of quantization
models instead of optimizing a single quantization model as
in previous approaches. We presented simple instantiations
of our framework using data-independent random rotations
(BRR) and data-driven iterative quantization with hyper-
cube stretching (BITQS). We showed that BRR already
obtains state-of-the-art hashing performance, without any
complex optimization or training as required by other state-
of-the-art approaches. Moreover, BRR offers a scalable so-
lution in large-scale applications where the database is ex-
pected to grow over time, as no re-optimization is needed
when new database points are added.
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