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Abstract

We present a novel and scalable approach for retrieval
and flexible alignment of 3d human motion examples given
a video query. Our method efficiently searches a large set
of motion capture (mocap) files accounting for speed vari-
ations in motion. To align a short video clip with a part
of a longer mocap sequence, we experiment with different
feature representations comparable across the two modali-
ties. We also evaluate two different Dynamic Time Warping
(DTW) approaches that allow sub-sequence matching and
suggest additional local constraints for a smooth alignment.
Finally, to quantify video-based mocap retrieval, we intro-
duce a benchmark providing a novel set of per-frame action
labels for 2 000 files of the CMU-mocap dataset, as well as
a collection of realistic video queries taken from YouTube.
Our experiments show that temporal flexibility is not only
required for the correct alignment of pose and motion, but
it also improves the retrieval accuracy.

1. Introduction
The problem of aligning two temporal sequences arises

naturally in diverse applications such as financial analy-
sis [7], medical diagnosis [28], handwriting analysis [3],
and speech recognition [21]. Along with the alignment,
these applications often require a measure of similarity be-
tween time-series data. Although efficient domain-specific
techniques for some problems exist (e.g., [16] for mocap-
to-mocap comparison), computing the similarities of time-
series in large datasets with variable length sequences re-
mains a challenging task in general.

In this paper we focus on finding an efficient and scal-
able method for alignment and distance computation be-
tween human motion sequences across two modalities —
video and motion capture. The problem occurs naturally
when searching large databases of motion capture data; of-
ten, mocap examples contain an actor performing multiple
activities (e.g., the actor may get up, walk, run and kick in
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Figure 1: An illustration of flexible alignment between a
short query video and a longer motion capture sequence.

a martial arts sequence); however, we want to search for a
single action depicted in a short video query. In short, we
wish to (a) retrieve mocap files with similar actions and (b)
align the video query to the retrieved mocap subsequence.

A key motivation for our work is that an effective search
through existing mocap files can save the effort of collect-
ing the data multiple times. For example, efficient mocap
retrieval can help animators find relevant clips to reuse in
animation. Another motivation is the use of similar, aligned
mocap sequences to blend them and generate new anima-
tions satisfying higher-level goals and constraints [13]. In
addition to computer animation, retrieving similar motion
capture sequences given a short video as a query is a crucial
step in various vision applications such as 3d human pose
tracking [22] and action recognition [8].

The related problem of large-scale video retrieval often
relies on inflexible matching (i.e., one-to-one frame corre-
spondence) to align sequences efficiently [23]. We hypoth-
esize that, due to the style and speed variations in human
motion, flexible temporal alignment is a better approach to
improve matching quality — when comparing semantically
similar human motion with slight temporal variations, in-
flexible alignment tends to assign a poor score due to the
lack of exact alignment.

Dynamic Time Warping (DTW) is a widely used tech-
nique for flexible alignment of any two temporal sequences.



DTW is guaranteed to find the optimal alignment given pair-
wise frame similarities between two sequences maintaining
the monotonicity constraint, which is central to temporal
matching. Unfortunately, DTW is better suited for align-
ment than for retrieval, because it assumes that the first and
last frames of two sequences are always aligned. This as-
sumption is reasonable when the sequences are roughly of
the same length, but, in a scenario such as ours where we
want to find the best alignment of a short (e.g., 40-frame)
video sequence to a long (e.g. 2-minute) mocap sequence,
DTW is no longer effective (see Figure 1). The naı̈ve solu-
tion of running DTW in a sliding-window fashion is com-
putationally expensive, with an asymptotic cost cubic in the
number of frames [35], while relatively efficient alterna-
tives [15] often make other restricting assumptions.

In this work, first we formalize the task of video-based
mocap retrieval and alignment by proposing a novel bench-
mark (V3dR); second, we establish baselines for the task
using efficient temporal matching techniques (flexible and
inflexible) and evaluate them thoroughly on the benchmark.
Finally, we suggest effective features for matching video
and mocap that are comparable across the two modalities.

2. Related Work
Mocap retrieval. Efficient retrieval of human motion data
can help animators find relevant mocap clips to reuse in
an animation. Various input modalities including hand-
drawing [4, 5], wooden puppets [6, 19], and Kinect [12]
have been used to provide this functionality. However,
monocular video remains a largely unexplored and chal-
lenging input modality.

The retrieval of a single 3d pose given an image of a per-
son has been used for 3d human pose estimation [25] and
tracking [22, 33]. Ren et al. [22] search for 3d pose exam-
ples using Haar-like features based on silhouettes from mul-
tiple synchronized views; they add temporal consistency
and restrict search using motion graphs. More recently
Yasin et al. [33] have used features inspired by content-
based mocap retrieval for 3d pose tracking. The above
methods retrieve poses per frame, and then add temporal
consistency for tracking. In contrast, we are interested in
aligning the whole video sequence to a mocap example.

In the only work that we know to deal with a direct
video-to-3d matching, Gupta et al. [8] retrieve short mo-
cap sequences given a video input as part of a cross-view
action recognition pipeline. Although they show qualitative
results, a quantitative evaluation of the retrieval problem re-
mains unaddressed.

Flexible alignment. Dynamic time warping (DTW) is a
popular algorithm used to align temporal sequences and to
cluster time-series data. DTW uses dynamic programming
to find the minimum-cost alignment of two sequences sub-

ject to constraints suitable for time-series data (i.e., mono-
tonicity and local continuity). FastDTW provides an effi-
cient approximation to DTW by solving the problem itera-
tively at multiple scales, achieving an asymptotic complex-
ity ofO(n) [24] in the length of the sequence, as opposed to
O(n2) for the original DTW. One of the limiting assump-
tions in DTW and its variants is that the first and the last
frames of the two sequences must be aligned (the end-point
constraint). This works well when comparing similar-sized
sequences; however, the end-point constraint is not suitable
for sequences of different lengths.

Some recent methods have attempted to relax the end-
point constraint partially, by fixing one of the ends but let-
ting the other float [26, 27]. DTW-S [35] matches sequences
of different sizes and allows flexibility at both ends by as-
suming balanced alignment, i.e., the warping uses an equal
number of frames from both sequences. This assumption
is violated when we match actions performed at different
speeds. Subsequence DTW [15] is an efficient method for
relaxing the end-point constraint; however, it is biased to-
wards choosing a shorter database subsequence for a given
query (more details in Section 4). Normalizing the score
with a measure of path length [2, 18] can remove this bias,
but leads to a non-smooth alignment. We suggest a simple
local constraint to smooth the alignment.

An alternate approach to sequence alignment is to treat
the warping as a discrete version of a monotonic function.
For instance, GCTW [36] poses alignment as an optimiza-
tion over a continuous space. GCTW can also incorporate
floating end-points; however, due to a non-convex objective
function, GCTW requires effective initialization to avoid lo-
cal minima. In our work, we build upon the original dy-
namic programming formulation, which does not require
initialization. For efficiency, we implement all the methods
on top of the FastDTW [24] code.

Mocap alignment/retrieval benchmarks. The two main
large and freely available mocap datasets widely used in
research are CMU [1] and HDM05 [17], but neither pro-
vide the frame-level annotations needed to evaluate the
alignment of similar human motion. A recently introduced
dataset, Human3.6M [9], provides a large number of anno-
tated video frames with synchronized mocap. However, the
action labels correspond to very high level activities (such
as making purchases and greeting) which can exhibit high
variability depending on the particular context. Hence, none
of these benchmarks are suited for testing both retrieval and
alignment. To bridge this gap we introduce a new bench-
mark called V3dR.

3. V3dR: Video-Based 3d Motion Retrieval

We formulate the task of 3d motion retrieval as, given a
video query, finding a snippet from a large mocap database



Figure 2: Example queries obtained from YouTube videos
as a part of our benchmark.

that resembles the human motion in the video. Following
previous work, which assumes that an action category is a
good proxy for 3d motion [32, 34], we define similarity be-
tween a video query and the retrieved sequence using their
action labels.

As part of the benchmark, we have assembled a series of
video queries, a database of 3d motion sequences (mocap),
ground truth annotations and two protocols for evaluation.

Queries. We prepare two sets of queries to evaluate our
method: videos captured in a controlled environment, as
well as a more challenging set of videos in-the-wild down-
loaded from YouTube. To factor out occlusion and camera
motion, we choose videos where the full body is mostly vis-
ible and there is little or no camera motion. The videos are
typically short snippets of 1 to 4 seconds in length. Figure 2
shows some of the frames from example video sequences.

We obtained another set of video queries from the IX-
MAS dataset [30], a benchmark that consists of short video
sequences where 10 actors perform simple actions in a lab-
oratory environment. This dataset is typically used to evalu-
ate cross-view action recognition, and contains videos cap-
tured from 5 distinct camera views. While most of the
YouTube videos have similar camera elevations, these video
snippets from IXMAS add variation in viewpoint. We pick
our queries randomly from cameras 1-4, excluding the fifth
camera due to its sharp elevation angle, which we find un-
realistic in natural videos.

Both sets contain the following 8 classes: sit down, get
up, turn, walk, punch, kick, pick up and throw overhead.
Each group of queries has 20 videos per action, with a single
person performing the action. This amounts to a total of
160 queries per set. We also provide manually-annotated
bounding boxes around the person in each video.

3d human motion database. We use the CMU-mocap
dataset [1] – the largest publicly-available mocap database
that we are aware of. From the 2 549 sequences, we kept
the 2 000 shortest, which results in around 4.5 hours of 3d
human motion. To make mocap and video data comparable
we sub-sample each mocap sequence to 24 fps.

Ground truth. We annotated the mocap sequences with
the same action labels as the queries. Since one mocap se-
quence may contain more than one action, we annotated the
4.5 hours of motion data per frame. These annotations are
not necessarily temporally exclusive (e.g., a person might
walk and turn at the same time). 976 sequences were an-
notated with at least one class, resulting in 1024 distractor
sequences. Figure 3 shows an example annotation.

Both IXMAS and CMU-mocap are publicly available,
and we are releasing our set of annotations, as well as our
list of video queries, to facilitate future comparisons1.

Evaluation. We propose two tasks to evaluate perfor-
mance on V3dR, which correspond to different use cases
of video-to-3d-motion retrieval. The first evaluation proto-
col is called detection modality. In this modality, a retrieved
example is counted as a true positive if it contains the action
featured in the video. In the second protocol, localization
modality, retrieval is expected to produce both a ranking
and a frame number that localizes the action in each 3d se-
quence in time. A retrieved 3d sequence is counted as a true
positive if it contains the queried action and its localization
is correct. To evaluate localization, we compare the query
label against the ground truth mocap annotation at the frame
number returned by the algorithm.

We evaluate our detection modality using mean Average
Precision (mAP) which is defined as the mean of the APs
over all queries, and serves as a single number to evaluate
performance per class. We evaluate our localization modal-
ity using recall@N curves [10]. For each query, we plot the
number of true positives (both in sequence and localization)
in the top N retrieved sequences over the total number of
positive examples in the database. This results in a mono-
tonically increasing curve for increasing N . We show the
average of these curves over all queries.

4. Retrieval with flexible alignment
To help the discussion, first we present some back-

ground and introduce notation. Let us consider two se-
quences X , Y of length Tx and Ty , consisting of vector
values (x1,x2, ...,xTx) and (y1,y2, ...,yTy ), xi,yi ∈ Rd
where X is a query, and Y is one of the database se-
quences. The function dist(ix, iy) returns the distance be-
tween the two frames xix and yiy of the respective se-
quences. A warp can be described using a pair of functions

1http://www.cs.ubc.ca/labs/lci/v3dr/

http://www.cs.ubc.ca/labs/lci/v3dr/
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Figure 3: An example of mocap annotations provided in the V3dR benchmark. At the top, we show a few frames of a mocap
sequence. The corresponding action labels are shown below. Note that the annotations are not temporally exclusive. As
shown above, one frame can have multiple labels. We use these annotations to evaluate video to mocap alignment.
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Figure 4: A toy example to illustrate different warping algorithms. The grey boxes in the cumulative cost matricesC represent
the chosen warp path for the same distance matrix D shown on the left. Each algorithm initializes some cells of C, fills the
rest according to a recursion formula, and then chooses a final score dists(X,Y ) for the alignment. The set of indices
{(i− 1, j), (i− 1, j − 1), (i, j − 1)} is abbreviated as (i, j)∗. In the case of local normalization, P (i, j) is the length of the
chosen normalized warp path for the subproblem up to D(i, j).

φ(.) = {φx(.), φy(.)}, which map aligned frame indices to
the originalX , Y indices. The distance between the warped
sequences can be defined as

dists(X,Y ) ≡
Tφ∑
i=1

dist(φx(i), φy(i)) (1)

where Tφ is the warped length after alignment. A warp
path is the sequence of indices (φx(i), φy(i)), for i from
1 through Tφ.

DTW. In the original Dynamic Time Warping (DTW) for-
mulation, warp paths are constrained such that (φx(i +
1), φy(i+1))−(φx(i), φy(i)) equals either (1, 0), (1, 1), or
(0, 1). This property enforces monotonicity and continuity
of DTW’s warp paths, which are needed for a well-behaved
alignment of time-series (for details see [21]). Another im-
portant consideration in DTW is the end-point constraint
which mathematically translates to

φx(1) = 1, φx(Tφ) = Tx;φy(1) = 1, φy(Tφ) = Ty, (2)

and forces the algorithm to use the full length of both se-
quences.

Given these constraints, DTW solves the minimization
problem argminφ dists(X,Y ) using dynamic program-
ming to obtain the optimal warp path. The distance func-
tion dist(.) is used to fill a matrixD ∈ RTx×Ty , where each
element D(i, j) is the distance between xi and yj (see Fig-
ure 4 for an exampleDmatrix). DTW aggregates the cost of
matching subproblems in a cumulative cost matrix C such
that C(Tx, Ty) returns the score of the optimal alignment
between the original sequences. Figure 4 also shows the
initialization and the update rules for filling matrix C. Even
though DTW returns the lowest-cost warp path, because of
the aforementioned end-point constraint it cannot localize a
query within a larger database file.

SS-DTW. Müller [15] presents a modified version of
DTW, called Subsequence DTW (SS-DTW), that removes
the end-point constraint. Instead of finding the lowest-cost



alignment using both the sequences, we can minimize

argmin
y1,y2,φ

dists(X,Y (y1 : y2)), (3)

where Y (y1 : y2) is a subsequence of Y i.e., Ty ≥ y2 ≥
y1 ≥ 1. The solution to this problem can also be obtained
using a dynamic program, as shown in Figure 4. Note the
changes, compared to DTW, in the initialization of the cu-
mulative cost matrix and calculation of the final score. Con-
ceptually, this can be thought of as placing two “special
frames” at each end of the query sequence X , which can
align with any extraneous frames in Y for no cost.

4.1. Adding normalization

Although SS-DTW loosens the end-point constraint, it
is biased towards matching shorter database subsequences.
The increased warp path length due to a longer subsequence
severely penalizes the SS-DTW objective. Since it is just as
likely for a motion occurring in a database sequence to be
slower than a motion occurring in a query sequence as it is
the other way around, this imbalance in flexibility is prob-
lematic. To get rid of this bias we consider a new objective
that normalizes the distance by the warp path length

argmin
φ

Tφ∑
i=1

1

Tφ
dist(φx(i), φy(i)). (4)

Note that Tφ, the length of the warp path, is dependent on
φ. This problem is known as the normalized edit distance
problem [14], which can again be solved using dynamic
programming. However, in this case the dynamic program
needs another dimension for path length, leading to a run-
time of O(n3) in the sequence length, which is not suitable
in a retrieval setting.

Since this expensive normalization is not practical, we
use a local normalization approach (SLNDTW) presented
in [18]. This O(n2) approximation (O(n) when built on
top of FastDTW [24]) works well in practice. Rather than
building a three-dimensional cumulative cost array – over
query frames, database frames, and the warp path length
– SLNDTW just keeps track of the path length (obtained
greedily) so far in a separate matrix P . See Figure 4 for the
update rule. Note that the initialization depicted here dif-
fers slightly from the original SLNDTW initialization. Here
we only focus on the normalization of the score. Although
SLNDTW does not return an optimal path, as defined by
Equation 4, it often finds a warp path very close to the best
normalized path on our data (see Figure 5).

4.2. Smoothing warp paths

Since the original DTW objective is the sum of distances
between warped frames of the two sequences, the warp path
is regularized. Adding an extra frame in the warp path adds

a positive value to the overall cost. But once we normal-
ize the cost by path length, the objective has no preference
for shorter path lengths. As a result, normalization leads to
“jagged” warp paths. However, a smooth warp path is more
desirable because it better describes the distortions due to
variations in speed. In order to achieve smoothness, we use
simple slope weighting [21] which applies local constraints
by associating small multiplicative costs to horizontal and
vertical movements in the warp path. Thus the final update
rule becomes

C(i, j) = min

{
D(i, j) + w∗C(i, j)∗P (i, j)∗

1 + P (i, j)∗

}
where w∗ are weights {w10, w11, w01} for indices (i, j)∗ ≡
{(i−1, j), (i−1, j−1), (i, j−1)} respectively. We choose
w01 = w10 = 1.15 and w11 = 1 for all our experiments.

5. Experiments
We test our approach on the V3dR dataset (described in

Section 3). First we describe some of the implementation
details, and then present our results.

5.1. Implementation details

Frame similarity measure. Following Gupta et al. [8],
we represent each video frame as an aggregation of dense
trajectory features [29], using the publicly available imple-
mentation of Wang et al.2. To ensure a consistent num-
ber of features across the video, we compute trajectories
in a sliding-window manner. We use mocap dense trajecto-
ries [8]3 as an equivalent feature description for mocap. We
set the trajectory length of 10 frames in all our experiments.
To aggregate these features for each frame, we use Fisher
Vectors [20], instead of the Bag of Words (BoW) aggrega-
tion used by Gupta et al. [8]. We fit a Gaussian Mixture
Model (GMM) to the trajectory descriptors obtained from
the query videos, and use these GMM parameters to gen-
erate the Fisher Vector representation for both video and
mocap frames.

In addition to trajectory-based motion descriptors, we
note that 2d pose can provide complementary information
for retrieval. Recent work has shown that even the noisy
pose estimate obtained from 2d pose detection is very ef-
fective as a high-level feature for action recognition [11].
Following this intuition, we use the relational pose features
described by Jhuang et al. [11]4. These features describe
relative positions and orientations of 2d joints, and do not
depend on their absolute location. We normalize each di-
mension of the relational feature descriptor to obtain a zero-

2http://lear.inrialpes.fr/people/wang/dense_
trajectories

3https://github.com/UBC-CVLab/
mocap-dense-trajectories

4https://github.com/UBC-CVLab/rel-pose-feats

http://lear.inrialpes.fr/people/wang/dense_trajectories
http://lear.inrialpes.fr/people/wang/dense_trajectories
https://github.com/UBC-CVLab/mocap-dense-trajectories
https://github.com/UBC-CVLab/mocap-dense-trajectories
https://github.com/UBC-CVLab/rel-pose-feats
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Figure 5: A comparison between exact normalization (as defined in Equation 4), using dynamic programming over a 3d
cumulative cost array, and approximate normalization used in SLNDTW [18]. The corresponding distance matrix (D) is
shown behind each warp path, with darker shades representing smaller distances. We show results using (a) a query from
IXMAS and a CMU-mocap file, (b) a query from YouTube and a CMU-mocap file, and (c) two sequences of length 100
containing random, l2-normalized 256-dimensional vectors. We notice that the approximate local normalization (SLNDTW)
works fairly well in all three cases, while being several times faster. Note that we have kept the end-point constraint in this
figure for simplicity.

mean and unit variance across all video queries, and then
l2-normalize each descriptor. We use the Flexible Mixture
of Parts [31] to obtain 2d poses from video. For mocap
sequences, a comparable representation is obtained by pro-
jecting the corresponding 3d joint locations to a given view-
point (discussed in the next paragraph). We concatenate
pose and trajectory features after separately PCA project-
ing them to 128 dimensions, and obtain a 256-dimensional
descriptor for each video and mocap frame.

We compare the effectiveness of these trajectory and
pose descriptors in Table 1. For this comparison, we fix
the final feature dimension to 256 and use CTE [23] as
our retrieval algorithm. We note that the pose features per-
form better compared to trajectories on most action classes.
However, a combination of the two descriptors gives the
best retrieval performance as evaluated by mAP. Thus, we
use a concatenation of pose and trajectory (P + T) features
for all further experimentation.

Viewpoint independent alignment. Following Gupta et
al. [8], we generate descriptors for mocap as seen for 18
different viewpoints. Since we assume orthographic projec-
tion, we only need to specify elevation, and azimuthal an-
gles. We choose the same angles as in [8]. We match a video
query against all mocap viewpoints, and the best match for
each mocap file is obtained by choosing the lowest-cost
alignment across all viewpoints.

DTW and CTE implementations. We implement all the
retrieval methods (except CTE) as modifications on the pub-
licly available FastDTW implementation by Stan Salvador5.
Thus, we build on an O(n) approximation of DTW.

5https://code.google.com/p/fastdtw/

We used our own CTE implementation with the same set
of parameters as described in [8]. While CTE implicitly
assumes a dot-product similarity measure, for DTW-based
approaches, we define the distance between two normalized
frame descriptors, p and q, to be (1− p · q).

Furthermore, to report alignment in the case of CTE, we
return the mocap frame matching the central video frame
of the query; and for SS-DTW and SLNDTW we use the
mocap frame at the middle of the warp path.

5.2. Retrieval and alignment performance

We show the recall@N results averaged over each of
the query sets in Figure 6. Flexible matching methods,
SS-DTW and SLNDTW (+smooth), consistently perform
better at localizing and retrieving relevant sequences com-
pared to inflexible approaches (CTE and [8]). These results
demonstrate the importance of flexibility in human motion
retrieval and alignment.

Table 1 shows our results on the detection modality. Here
we report mean average precision numbers per class aver-
aged over both the IXMAS and YouTube query sets. We
again observe that flexible matching consistently outper-
forms the previous method of Gupta et al. [8]. Addition-
ally, using SLNDTW (+smooth), we are able to improve
the overall mAP by 16% over the inflexible baseline (CTE)
and around 8% over SS-DTW.

We show a few qualitative alignment results to compare
different approaches in Figure 7. We note that the flexible
methods are able to deal with the stylistic variations in the
query video and the retrieved mocap sequence, leading to a
better temporal alignment between the two sequences.

https://code.google.com/p/fastdtw/
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Figure 6: Recall on the localization modality of the video-based mocap retrieval benchmark, averaged over all action types.
SS-DTW and SLNDTW (+smooth) perform similarly for both IXMAS and YouTube query sets. Gupta et al. [8] use CTE
with trajectory-only descriptors, while we use pose-and-trajectory descriptors for both CTE and DTW-based methods.

Gupta et al. [8] CTE SS-DTW SLNDTW +smooth

# Action # of ex. Chance Traj (T) Pose (P) P+T P+T P+T P+T

1 Sit down 30 0.015 0.038 0.041 0.132 0.126 0.169 0.139 0.155
2 Get up 56 0.028 0.076 0.069 0.172 0.175 0.203 0.194 0.220
3 Turn 194 0.098 0.148 0.147 0.196 0.201 0.195 0.221 0.230
4 Walk 739 0.373 0.598 0.611 0.568 0.663 0.585 0.688 0.669
5 Punch 13 0.007 0.032 0.021 0.030 0.048 0.070 0.064 0.059
6 Kick 23 0.012 0.017 0.023 0.017 0.023 0.042 0.029 0.027
7 Pick up 76 0.038 0.147 0.158 0.291 0.314 0.392 0.438 0.438
8 Throw oh. 17 0.009 0.015 0.018 0.027 0.022 0.035 0.023 0.027

Overall mAP 0.072 0.134 0.136 0.179 0.196 0.211 0.225 0.228

Table 1: Per-class and overall mAP on the detection modality of the video-based mocap retrieval benchmark. We show an
average performance using both IXMAS and YouTube queries. # of ex. is the number of files in the database containing the
given action. Chance corresponds to the expected performance of uniformly random retrieval. We highlight the best value in
each category with boldface and underline the second best value.

6. Discussion

We have presented an efficient method for flexible
matching and distance computation between a short video
query and a mocap sequence. We have also introduced a
novel benchmark (V3dR) to evaluate the challenging task
of video-based retrieval of human motion. V3dR provides
frame-level action annotations for around 400 000 frames of
the CMU-mocap dataset along with video queries with va-
riety in viewpoints, realistic clothing and backgrounds. We
hope that V3dR will encourage further research in this area.

Additionally, we have shown that the relational pose fea-
tures, previously used for action recognition, are also effec-
tive for human motion retrieval. This finding allows us to
use any state-of-the-art 2d pose detector trained on images
to retrieve similar mocap sequences using videos without
any additional training data.
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